Multivariate Jacobi polynomials and the Selberg integral. II
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXV, Tome 436 (2015), pp. 199-218 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The problem of harmonic analysis for infinite-dimensional classical groups and symmetric spaces leads to a family of probability measures with infinite-dimensional support. In the present paper, we construct these measures in a different way, which makes it possible to substantially extend the range of the parameters. The measures that we obtain can be interpreted as the result of formal analytic continuation of the $N$-dimensional beta distributions which appear in the Selberg integral. Our procedure of analytic continuation, based on Carlson's theorem, turns $N$ into a complex parameter.
@article{ZNSL_2015_436_a11,
     author = {G. Olshanski and A. Osinenko},
     title = {Multivariate {Jacobi} polynomials and the {Selberg} {integral.~II}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {199--218},
     year = {2015},
     volume = {436},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_436_a11/}
}
TY  - JOUR
AU  - G. Olshanski
AU  - A. Osinenko
TI  - Multivariate Jacobi polynomials and the Selberg integral. II
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2015
SP  - 199
EP  - 218
VL  - 436
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2015_436_a11/
LA  - en
ID  - ZNSL_2015_436_a11
ER  - 
%0 Journal Article
%A G. Olshanski
%A A. Osinenko
%T Multivariate Jacobi polynomials and the Selberg integral. II
%J Zapiski Nauchnykh Seminarov POMI
%D 2015
%P 199-218
%V 436
%U http://geodesic.mathdoc.fr/item/ZNSL_2015_436_a11/
%G en
%F ZNSL_2015_436_a11
G. Olshanski; A. Osinenko. Multivariate Jacobi polynomials and the Selberg integral. II. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXV, Tome 436 (2015), pp. 199-218. http://geodesic.mathdoc.fr/item/ZNSL_2015_436_a11/

[1] G. E. Andrews, R. Askey, R. Roy, Special Functions, Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl

[2] A. Borodin, G. Olshanski, “Harmonic functions on multiplicative graphs and interpolation polynomials”, Electr. J. Combin., 7 (2000), #R28 | MR | Zbl

[3] A. Borodin, G. Olshanski, “The Young bouquet and its boundary”, Moscow Math. J., 13:2 (2013), 193–232 | MR | Zbl

[4] P. J. Forrester, S. Ole Warnaar, “The importance of Selberg integral”, Bull. Amer. Math. Soc. (N.S.), 45 (2008), 489–534 | DOI | MR | Zbl

[5] V. Gorin, G. Olshanski, “Determinantal measures related to big $q$-Jacobi polynomials”, Funct. Anal. Appl., 49:3 (2015), 214–217 | DOI

[6] V. Gorin, G. Olshanski, “A quantization of the harmonic analysis on the infinite-dimensional unitary group”, J. Funct. Anal., 270:1 (2016), 376–418 ; arXiv: 1504.06832 | MR

[7] G. Heckman, “Hypergeometric and spherical functions”: G. Heckman, H. Schlichtkrull, Harmonic Analysis and Special Functions on Symmetric Spaces, Academic. Press, San Diego, 1994 | MR | Zbl

[8] K. W. J. Kadell, “The Selberg–Jack symmetric functions”, Adv. Math., 130:1 (1997), 33–102 | DOI | MR | Zbl

[9] S. V. Kerov, “Anisotropic Young diagrams and Jack symmetric functions”, Funct. Anal. Appl., 34:1 (2000), 41–51 | DOI | MR | Zbl

[10] T. H. Koornwinder, “Special functions associated with root systems: A first introduction for nonspecialists”, Special Functions and Differential Equations, eds. K. Srinivasa Rao et al., Allied Publishers, Madras, 1998, 10–24 | MR | Zbl

[11] M. Lassalle, “Polynômes de Jacobi généralisés”, C. R. Acad. Sci. Paris Sér. I Math., 312:6 (1991), 425–428 | MR | Zbl

[12] I. G. Macdonald, Orthogonal polynomials associated with root systems, Preprint, 1987 ; reproduced in: Séminaire Lotharingien de Combinatoire, 45 (2000), Article B45a | MR | MR

[13] K. Mimachi, “A duality of the Macdonald–Koornwinder polynomials and its application to integral representations”, Duke Math. J., 107:2 (2001), 265–281 | DOI | MR | Zbl

[14] Yu. A. Neretin, “Hua-type integrals over unitary groups and over projective limits of unitary groups”, Duke Math. J., 114 (2002), 239–266 | DOI | MR | Zbl

[15] A. Okounkov, G. Olshanski, “Limits of $BC$-type orthogonal polynomials as the number of variables goes to infinity”, Jack, Hall–Littlewood and Macdonald polynomials, Contemp. Math., 417, Amer. Math. Soc., Providence, RI, 2006, 281–318 | DOI | MR | Zbl

[16] G. Olshanski, “The problem of harmonic analysis on the infinite-dimensional unitary group”, J. Funct. Anal., 205:2 (2003), 464–524 | DOI | MR | Zbl

[17] G. Olshanski, “Probability measures on dual objects to compact symmetric spaces, and hypergeometric identities”, Funct. Anal. Appl., 37:4 (2003), 281–301 | DOI | MR | Zbl

[18] G. Olshanski, A. Osinenko, “Multivariate Jacobi polynomials and the Selberg integral”, Funct. Anal. Appl., 46:4 (2012), 262–278 | DOI | MR | Zbl

[19] D. Pickrell, “Measures on infinite dimensional Grassmann manifold”, J. Funct. Anal., 70 (1987), 323–356 | DOI | MR | Zbl

[20] E. M. Rains, “$BC_n$-symmetric polynomials”, Transform. Groups, 10:1 (2005), 63–132 | DOI | MR | Zbl