Several remarks on groups of automorphisms of free groups
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXV, Tome 436 (2015), pp. 189-198

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathbb G$ be the group of automorphisms of a free group $F_\infty$ of infinite order. Let $\mathbb H$ be the stabilizer of the first $m$ generators of $F_\infty$. We show that the double cosets $\Gamma_m=\mathbb{H\setminus G/H}$ admit a natural semigroup structure. For any compact group $K$, the semigroup $\Gamma_m$ acts in the space $L^2$ on the product of $m$ copies of $K$.
@article{ZNSL_2015_436_a10,
     author = {Yu. A. Neretin},
     title = {Several remarks on groups of automorphisms of free groups},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {189--198},
     publisher = {mathdoc},
     volume = {436},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_436_a10/}
}
TY  - JOUR
AU  - Yu. A. Neretin
TI  - Several remarks on groups of automorphisms of free groups
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2015
SP  - 189
EP  - 198
VL  - 436
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2015_436_a10/
LA  - ru
ID  - ZNSL_2015_436_a10
ER  - 
%0 Journal Article
%A Yu. A. Neretin
%T Several remarks on groups of automorphisms of free groups
%J Zapiski Nauchnykh Seminarov POMI
%D 2015
%P 189-198
%V 436
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2015_436_a10/
%G ru
%F ZNSL_2015_436_a10
Yu. A. Neretin. Several remarks on groups of automorphisms of free groups. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXV, Tome 436 (2015), pp. 189-198. http://geodesic.mathdoc.fr/item/ZNSL_2015_436_a10/