The entropy of Gibbs measures on sofic groups
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXV, Tome 436 (2015), pp. 34-48
Voir la notice de l'article provenant de la source Math-Net.Ru
We show that for every local potential on a sofic group there exists a shift-invariant Gibbs measure. Under some condition we show that the sofic entropy of the corresponding shift action does not depend on a sofic approximation.
@article{ZNSL_2015_436_a1,
author = {A. Alpeev},
title = {The entropy of {Gibbs} measures on sofic groups},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {34--48},
publisher = {mathdoc},
volume = {436},
year = {2015},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_436_a1/}
}
A. Alpeev. The entropy of Gibbs measures on sofic groups. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXV, Tome 436 (2015), pp. 34-48. http://geodesic.mathdoc.fr/item/ZNSL_2015_436_a1/