The entropy of Gibbs measures on sofic groups
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXV, Tome 436 (2015), pp. 34-48

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that for every local potential on a sofic group there exists a shift-invariant Gibbs measure. Under some condition we show that the sofic entropy of the corresponding shift action does not depend on a sofic approximation.
@article{ZNSL_2015_436_a1,
     author = {A. Alpeev},
     title = {The entropy of {Gibbs} measures on sofic groups},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {34--48},
     publisher = {mathdoc},
     volume = {436},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_436_a1/}
}
TY  - JOUR
AU  - A. Alpeev
TI  - The entropy of Gibbs measures on sofic groups
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2015
SP  - 34
EP  - 48
VL  - 436
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2015_436_a1/
LA  - en
ID  - ZNSL_2015_436_a1
ER  - 
%0 Journal Article
%A A. Alpeev
%T The entropy of Gibbs measures on sofic groups
%J Zapiski Nauchnykh Seminarov POMI
%D 2015
%P 34-48
%V 436
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2015_436_a1/
%G en
%F ZNSL_2015_436_a1
A. Alpeev. The entropy of Gibbs measures on sofic groups. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXV, Tome 436 (2015), pp. 34-48. http://geodesic.mathdoc.fr/item/ZNSL_2015_436_a1/