The entropy of Gibbs measures on sofic groups
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXV, Tome 436 (2015), pp. 34-48 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We show that for every local potential on a sofic group there exists a shift-invariant Gibbs measure. Under some condition we show that the sofic entropy of the corresponding shift action does not depend on a sofic approximation.
@article{ZNSL_2015_436_a1,
     author = {A. Alpeev},
     title = {The entropy of {Gibbs} measures on sofic groups},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {34--48},
     year = {2015},
     volume = {436},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_436_a1/}
}
TY  - JOUR
AU  - A. Alpeev
TI  - The entropy of Gibbs measures on sofic groups
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2015
SP  - 34
EP  - 48
VL  - 436
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2015_436_a1/
LA  - en
ID  - ZNSL_2015_436_a1
ER  - 
%0 Journal Article
%A A. Alpeev
%T The entropy of Gibbs measures on sofic groups
%J Zapiski Nauchnykh Seminarov POMI
%D 2015
%P 34-48
%V 436
%U http://geodesic.mathdoc.fr/item/ZNSL_2015_436_a1/
%G en
%F ZNSL_2015_436_a1
A. Alpeev. The entropy of Gibbs measures on sofic groups. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXV, Tome 436 (2015), pp. 34-48. http://geodesic.mathdoc.fr/item/ZNSL_2015_436_a1/

[1] L. Bowen, “Measure conjugacy invariants for actions of countable sofic groups”, J. Amer. Math. Soc., 23 (2010), 217–245 | DOI | MR | Zbl

[2] L. Bowen, “Entropy for expansive algebraic actions of residually finite groups”, Ergodic Theory Dynam. Systems, 31:3 (2011), 703–718 | DOI | MR | Zbl

[3] L. Bowen, H. Li, “Harmonic models and spanning forests of residually finite groups”, J. Funct. Anal., 263:7 (2012), 1769–1808 | DOI | MR | Zbl

[4] A. Carderi, Ultraproducts, weak equivalence and sofic entropy, 2015, arXiv: 1509.03189

[5] N.-P. Chung, “Topological pressure and the variational principle for actions of sofic groups”, Ergodic Theory Dynam. Systems, 33:5 (2013), 1363–1390 | DOI | MR | Zbl

[6] R. L. Dobrushin, “Description of a random field by its conditional probabilities and its regularity conditions”, Teor. Veroyatnost. Primenen., 13 (1968), 201–229 | MR | Zbl

[7] F. Rassoul-Agha, T. Seppäläinen, A Course on Large Deviations with an Introduction to Gibbs Measures, Amer. Math. Soc., Providence, RI, 2015 | MR | Zbl

[8] H.-O. Georgii, Gibbs Measures and Phase Transitions, Walter de Gruyter, Berlin, 2011 | MR

[9] B. Hayes, Fuglede–Kadison determinants and sofic entropy, 2014, arXiv: 1402.1135

[10] L. V. Kantorovich, “On the translocation of masses”, Dokl. Akad. Nauk SSSR, 37:7–8 (1942), 227–229

[11] D. Kerr, “Sofic measure entropy via finite partitions”, Groups Geom. Dyn., 7 (2013), 617–632 | DOI | MR | Zbl

[12] A. M. Vershik, “The Kantorovich metric: initial history and little-known applications”, Zap. Nauchn. Semin. POMI, 312, 2004, 69–85 | MR | Zbl