@article{ZNSL_2015_436_a1,
author = {A. Alpeev},
title = {The entropy of {Gibbs} measures on sofic groups},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {34--48},
year = {2015},
volume = {436},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_436_a1/}
}
A. Alpeev. The entropy of Gibbs measures on sofic groups. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXV, Tome 436 (2015), pp. 34-48. http://geodesic.mathdoc.fr/item/ZNSL_2015_436_a1/
[1] L. Bowen, “Measure conjugacy invariants for actions of countable sofic groups”, J. Amer. Math. Soc., 23 (2010), 217–245 | DOI | MR | Zbl
[2] L. Bowen, “Entropy for expansive algebraic actions of residually finite groups”, Ergodic Theory Dynam. Systems, 31:3 (2011), 703–718 | DOI | MR | Zbl
[3] L. Bowen, H. Li, “Harmonic models and spanning forests of residually finite groups”, J. Funct. Anal., 263:7 (2012), 1769–1808 | DOI | MR | Zbl
[4] A. Carderi, Ultraproducts, weak equivalence and sofic entropy, 2015, arXiv: 1509.03189
[5] N.-P. Chung, “Topological pressure and the variational principle for actions of sofic groups”, Ergodic Theory Dynam. Systems, 33:5 (2013), 1363–1390 | DOI | MR | Zbl
[6] R. L. Dobrushin, “Description of a random field by its conditional probabilities and its regularity conditions”, Teor. Veroyatnost. Primenen., 13 (1968), 201–229 | MR | Zbl
[7] F. Rassoul-Agha, T. Seppäläinen, A Course on Large Deviations with an Introduction to Gibbs Measures, Amer. Math. Soc., Providence, RI, 2015 | MR | Zbl
[8] H.-O. Georgii, Gibbs Measures and Phase Transitions, Walter de Gruyter, Berlin, 2011 | MR
[9] B. Hayes, Fuglede–Kadison determinants and sofic entropy, 2014, arXiv: 1402.1135
[10] L. V. Kantorovich, “On the translocation of masses”, Dokl. Akad. Nauk SSSR, 37:7–8 (1942), 227–229
[11] D. Kerr, “Sofic measure entropy via finite partitions”, Groups Geom. Dyn., 7 (2013), 617–632 | DOI | MR | Zbl
[12] A. M. Vershik, “The Kantorovich metric: initial history and little-known applications”, Zap. Nauchn. Semin. POMI, 312, 2004, 69–85 | MR | Zbl