Calculation of Pfaffians by a~chip removal
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXV, Tome 436 (2015), pp. 5-33

Voir la notice de l'article provenant de la source Math-Net.Ru

We define an operation of chip removal that generalizes the Urban Renewal trick of Kuperberg and Propp. This operation replaces a subgraph $H$ of a graph $G$ with a small collection of weighted edges so that the equalty $\mathrm{Pf}(G)=\mathrm{Pf}(H)\mathrm{Pf}(G')$ holds (here $G'$ is the graph obtained after the replacement). We explain how to calculate the weights of the new edges in terms of the Pfaffians of the chip. We give several applications of this construction. One of these applications is to “Arnold's snakes”, which are graphs with the number of perfect matchings equal to Euler–Bernoulli numbers.
@article{ZNSL_2015_436_a0,
     author = {V. E. Aksenov and K. P. Kokhas},
     title = {Calculation of {Pfaffians} by a~chip removal},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--33},
     publisher = {mathdoc},
     volume = {436},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_436_a0/}
}
TY  - JOUR
AU  - V. E. Aksenov
AU  - K. P. Kokhas
TI  - Calculation of Pfaffians by a~chip removal
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2015
SP  - 5
EP  - 33
VL  - 436
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2015_436_a0/
LA  - ru
ID  - ZNSL_2015_436_a0
ER  - 
%0 Journal Article
%A V. E. Aksenov
%A K. P. Kokhas
%T Calculation of Pfaffians by a~chip removal
%J Zapiski Nauchnykh Seminarov POMI
%D 2015
%P 5-33
%V 436
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2015_436_a0/
%G ru
%F ZNSL_2015_436_a0
V. E. Aksenov; K. P. Kokhas. Calculation of Pfaffians by a~chip removal. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXV, Tome 436 (2015), pp. 5-33. http://geodesic.mathdoc.fr/item/ZNSL_2015_436_a0/