Calculation of Pfaffians by a chip removal
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXV, Tome 436 (2015), pp. 5-33 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We define an operation of chip removal that generalizes the Urban Renewal trick of Kuperberg and Propp. This operation replaces a subgraph $H$ of a graph $G$ with a small collection of weighted edges so that the equalty $\mathrm{Pf}(G)=\mathrm{Pf}(H)\mathrm{Pf}(G')$ holds (here $G'$ is the graph obtained after the replacement). We explain how to calculate the weights of the new edges in terms of the Pfaffians of the chip. We give several applications of this construction. One of these applications is to “Arnold's snakes”, which are graphs with the number of perfect matchings equal to Euler–Bernoulli numbers.
@article{ZNSL_2015_436_a0,
     author = {V. E. Aksenov and K. P. Kokhas},
     title = {Calculation of {Pfaffians} by a~chip removal},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--33},
     year = {2015},
     volume = {436},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_436_a0/}
}
TY  - JOUR
AU  - V. E. Aksenov
AU  - K. P. Kokhas
TI  - Calculation of Pfaffians by a chip removal
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2015
SP  - 5
EP  - 33
VL  - 436
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2015_436_a0/
LA  - ru
ID  - ZNSL_2015_436_a0
ER  - 
%0 Journal Article
%A V. E. Aksenov
%A K. P. Kokhas
%T Calculation of Pfaffians by a chip removal
%J Zapiski Nauchnykh Seminarov POMI
%D 2015
%P 5-33
%V 436
%U http://geodesic.mathdoc.fr/item/ZNSL_2015_436_a0/
%G ru
%F ZNSL_2015_436_a0
V. E. Aksenov; K. P. Kokhas. Calculation of Pfaffians by a chip removal. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXV, Tome 436 (2015), pp. 5-33. http://geodesic.mathdoc.fr/item/ZNSL_2015_436_a0/

[1] V. Aksenov, K. Kokhas, “Udalenie chipov. Urban Renewal revisited”, Zap. nauchn. semin. POMI, 432, 2015, 5–29 | Zbl

[2] V. I. Arnold, “Ischislenie zmei i kombinatorika chisel Bernulli, Eilera i Springera grupp Kokstera”, UMN, 47:1 (1992), 3–45 | MR | Zbl

[3] L. Lovas, M. Plammer, Prikladnye zadachi teorii grafov, Mir, M., 1998

[4] M. Ciucu, “A generalization of Kuo condensation”, J. Combin. Theory Ser. A, 134 (2015), 221–241 | DOI | MR | Zbl

[5] T. Došlić, “Perfect matchings in lattice animals and lattice paths with constraints”, Croatia Chemica Acta, 78:2 (2005), 251–259

[6] M. Fulmek, “Graphical condensation, overlapping Pfaffians and superpositions of matchings”, Electron. J. Combin., 17:1 (2010), Research Paper 83 | MR | Zbl

[7] R. Kenyon, “Local statistics of lattice dimers”, Ann. Inst. H. Poincaré Probab. Statist., 33:5 (1997), 591–618 | DOI | MR | Zbl

[8] P. H. Lundow, Enumeration of matchings in polygraphs, Research report, Umea University, 1988

[9] J. A. Sellers, “Domino tilings and products of Fibonacci and Pell numbers”, J. Integer Seq., 5 (2002), Article 02.1.2 | MR

[10] V. Strehl, “Counting domino tilings of rectangles via resultants”, Adv. Appl. Math., 27:2–3 (2001), 597–626 | DOI | MR | Zbl