Width of extraspecial unipotent radical with respect to root elements
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 28, Tome 435 (2015), pp. 168-177

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G=G(\Phi,K)$ be a Chevalley group of type $Ф$ over a field $K$, where $\Phi$ is a simply-laced root system. We study the extraspecial unipotent radical of $G$ and prove that any its element is a product of not more than three root elements. Moreover, we prove that any element of the radical is, possibly after a conjugation by an element of the Levi subgroup, a product of six elementary root elements.
@article{ZNSL_2015_435_a8,
     author = {I. M. Pevzner},
     title = {Width of extraspecial unipotent radical with respect to root elements},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {168--177},
     publisher = {mathdoc},
     volume = {435},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_435_a8/}
}
TY  - JOUR
AU  - I. M. Pevzner
TI  - Width of extraspecial unipotent radical with respect to root elements
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2015
SP  - 168
EP  - 177
VL  - 435
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2015_435_a8/
LA  - ru
ID  - ZNSL_2015_435_a8
ER  - 
%0 Journal Article
%A I. M. Pevzner
%T Width of extraspecial unipotent radical with respect to root elements
%J Zapiski Nauchnykh Seminarov POMI
%D 2015
%P 168-177
%V 435
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2015_435_a8/
%G ru
%F ZNSL_2015_435_a8
I. M. Pevzner. Width of extraspecial unipotent radical with respect to root elements. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 28, Tome 435 (2015), pp. 168-177. http://geodesic.mathdoc.fr/item/ZNSL_2015_435_a8/