Width of extraspecial unipotent radical with respect to root elements
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 28, Tome 435 (2015), pp. 168-177 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $G=G(\Phi,K)$ be a Chevalley group of type $Ф$ over a field $K$, where $\Phi$ is a simply-laced root system. We study the extraspecial unipotent radical of $G$ and prove that any its element is a product of not more than three root elements. Moreover, we prove that any element of the radical is, possibly after a conjugation by an element of the Levi subgroup, a product of six elementary root elements.
@article{ZNSL_2015_435_a8,
     author = {I. M. Pevzner},
     title = {Width of extraspecial unipotent radical with respect to root elements},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {168--177},
     year = {2015},
     volume = {435},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_435_a8/}
}
TY  - JOUR
AU  - I. M. Pevzner
TI  - Width of extraspecial unipotent radical with respect to root elements
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2015
SP  - 168
EP  - 177
VL  - 435
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2015_435_a8/
LA  - ru
ID  - ZNSL_2015_435_a8
ER  - 
%0 Journal Article
%A I. M. Pevzner
%T Width of extraspecial unipotent radical with respect to root elements
%J Zapiski Nauchnykh Seminarov POMI
%D 2015
%P 168-177
%V 435
%U http://geodesic.mathdoc.fr/item/ZNSL_2015_435_a8/
%G ru
%F ZNSL_2015_435_a8
I. M. Pevzner. Width of extraspecial unipotent radical with respect to root elements. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 28, Tome 435 (2015), pp. 168-177. http://geodesic.mathdoc.fr/item/ZNSL_2015_435_a8/

[1] A. Borel, “Svoistva i lineinye predstavleniya grupp Shevalle”, Seminar po algebraicheskim gruppam, Mir, M., 1973, 9–59 | MR

[2] N. Burbaki, Gruppy i algebry Li, Glavy IV–VI, Mir, M., 1972 | MR

[3] N. Burbaki, Gruppy i algebry Li, Glavy VII–VIII, Mir, M., 1978 | MR

[4] N. A. Vavilov, A. Yu. Luzgarev, I. M. Pevzner, “Gruppa Shevalle tipa $\mathrm E_6$ v 27-mernom predstavlenii”, Zap. nauchn. semin. POMI, 338, 2006, 5–68 | MR | Zbl

[5] N. A. Vavilov, I. M. Pevzner, “Troiki dlinnykh kornevykh podgrupp”, Zap. nauchn. semin. POMI, 343, 2007, 54–83 | MR

[6] N. A. Vavilov, A. A. Semenov, “Dlinnye kornevye tory v gruppakh Shevalle”, Algebra i analiz, 24:3 (2012), 22–83 | MR | Zbl

[7] O. O'Mira, “Lektsii o lineinykh gruppakh”, Avtomorfizmy klassicheskikh grupp, Mir, M., 1976, 57–167 | MR

[8] O. O'Mira, Lektsii o simplekticheskikh gruppakh, Mir, M., 1979

[9] I. M. Pevzner, “Geometriya kornevykh elementov v gruppakh tipa $\mathrm E_6$”, Algebra i analiz, 23:3 (2011), 261–309 | MR | Zbl

[10] I. M. Pevzner, “Shirina grupp tipa $\mathrm E_6$ otnositelno mnozhestva kornevykh elementov. I”, Algebra i analiz, 23:5 (2011), 155–198 | MR

[11] I. M. Pevzner, “Shirina grupp tipa $\mathrm E_6$ otnositelno mnozhestva kornevykh elementov. II”, Zap. nauchn. semin. POMI, 386, 2011, 242–264 | MR

[12] I. M. Pevzner, “Shirina gruppy $\mathrm{GL}(6,K)$ otnositelno mnozhestva kvazikornevykh elementov”, Zap. nauchn. semin. POMI, 423, 2014, 183–204

[13] T. A. Springer, “Lineinye algebraicheskie gruppy”, Algebraicheskaya geometriya – 4, Itogi nauki i tekhn. Ser. Sovrem. problemy mat. Fundam. napravleniya, 55, VINITI, M., 1989, 5–136 | MR | Zbl

[14] R. Steinberg, Lektsii o gruppakh Shevalle, Mir, M., 1975 | MR

[15] Dzh. Khamfri, Lineinye algebraicheskie gruppy, Nauka, M., 1980 | MR

[16] Dzh. Khamfri, Vvedenie v teoriyu algebr Li i ikh predstavlenii, MTsNMO, M., 2003

[17] A. Cohen, A. Steinbach, R. Ushirobira, D. Wales, “Lie algebras generated by extremal elements”, J. Algebra, 236:1 (2001), 122–154 | DOI | MR | Zbl

[18] J. Dieudonné, “Sur les générateurs des groupes classiques”, Summa Brasil. Math., 3 (1955), 149–179 | MR

[19] T. A. Springer, Linear algebraic groups, Progress in Mathematics, 9, Birkhäuser Boston Inc., Boston, 1998 | MR | Zbl