A variant of the Levine–Morel moving Lemma
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 28, Tome 435 (2015), pp. 163-167 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider a version of the lemma proved by Levine–Morel in their book “Algebraic cobordisms”. Being reformulated in the Chow group context the lemma turns out to be valid in any characteristic and its proof is substantially shortened.
@article{ZNSL_2015_435_a7,
     author = {I. A. Panin and K. I. Pimenov},
     title = {A variant of the {Levine{\textendash}Morel} moving {Lemma}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {163--167},
     year = {2015},
     volume = {435},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_435_a7/}
}
TY  - JOUR
AU  - I. A. Panin
AU  - K. I. Pimenov
TI  - A variant of the Levine–Morel moving Lemma
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2015
SP  - 163
EP  - 167
VL  - 435
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2015_435_a7/
LA  - en
ID  - ZNSL_2015_435_a7
ER  - 
%0 Journal Article
%A I. A. Panin
%A K. I. Pimenov
%T A variant of the Levine–Morel moving Lemma
%J Zapiski Nauchnykh Seminarov POMI
%D 2015
%P 163-167
%V 435
%U http://geodesic.mathdoc.fr/item/ZNSL_2015_435_a7/
%G en
%F ZNSL_2015_435_a7
I. A. Panin; K. I. Pimenov. A variant of the Levine–Morel moving Lemma. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 28, Tome 435 (2015), pp. 163-167. http://geodesic.mathdoc.fr/item/ZNSL_2015_435_a7/

[1] M. Artin, “Comparaison avec la cohomologie classique: cas d`un préschéma lisse”, Exp. XI in SGA4, Lect. Notes in Math., 305, Springer, 1970, 64–78 | DOI

[2] M. Levine, F. More, Algebraic Cobordism, Springer Monographs in Mathematics, Springer-Verlag, 2007, xii+244 pp. | MR | Zbl

[3] I. Panin, “Rationally isotropic quadratic spaces are locally isotropic”, Invent. math., 176 (2009), 397–403 | DOI | MR | Zbl

[4] I. Panin, K. Pimenov, “Rationally Isotropic Quadratic Spaces Are Locally Isotropic: II”, Documenta Math., 2010, Extra Volume: Andrei A. Suslin's Sixtieth Birthday, 515–523 | MR | Zbl