Formal modules for generalized Lubin–Tate groups
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 28, Tome 435 (2015), pp. 95-112 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study generalized Lubin–Tate formal groups: their structure, the ring of endomorphisms of the point group. We investigate the primary elements and prove an explicit formula for the generalized Hilbert symbol.
@article{ZNSL_2015_435_a5,
     author = {A. I. Madunts and R. P. Vostokova},
     title = {Formal modules for generalized {Lubin{\textendash}Tate} groups},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {95--112},
     year = {2015},
     volume = {435},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_435_a5/}
}
TY  - JOUR
AU  - A. I. Madunts
AU  - R. P. Vostokova
TI  - Formal modules for generalized Lubin–Tate groups
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2015
SP  - 95
EP  - 112
VL  - 435
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2015_435_a5/
LA  - ru
ID  - ZNSL_2015_435_a5
ER  - 
%0 Journal Article
%A A. I. Madunts
%A R. P. Vostokova
%T Formal modules for generalized Lubin–Tate groups
%J Zapiski Nauchnykh Seminarov POMI
%D 2015
%P 95-112
%V 435
%U http://geodesic.mathdoc.fr/item/ZNSL_2015_435_a5/
%G ru
%F ZNSL_2015_435_a5
A. I. Madunts; R. P. Vostokova. Formal modules for generalized Lubin–Tate groups. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 28, Tome 435 (2015), pp. 95-112. http://geodesic.mathdoc.fr/item/ZNSL_2015_435_a5/

[1] M. Hazewinkel, Formal groups and applications, Academic press, N.Y., 1978, 573 pp. | MR | Zbl

[2] J. Lubin, J. Tate, “Formal complex multiplication in local fields”, Ann. Math. (2), 81:2 (1985), 380–387 | DOI | MR

[3] S. V. Vostokov, “Normennoe sparivanie v formalnykh modulyakh”, Izv. AN SSSR, ser. mat., 43:4 (1979), 765–794 | MR | Zbl

[4] S. V. Vostokov, “Simvol Gilberta dlya formalnykh grupp Lyubina–Teita. I”, Zap. nauchn. semin. LOMI, 114, 1982, 77–95 | MR | Zbl

[5] S. V. Vostokov, I. B. Fesenko, “Simvol Gilberta dlya formalnykh grupp Lyubina–Teita. II”, Zap. nauchn. sem. LOMI, 132, 1983, 85–96 | MR

[6] S. V. Vostokov, “Simvoly na formalnykh gruppakh”, Izv. AN SSSR, ser. mat., 45:5 (1981), 985–1014 | MR | Zbl

[7] S. V. Vostokov, “Yavnaya forma zakona vzaimnosti”, Izv. AN SSSR, ser. mat., 42:6 (1978), 1288–1321 | MR | Zbl

[8] K. Ivasava, Lokalnaya teoriya polei klassov, Mir, M., 1983, 180 pp. | MR

[9] A. I. Madunts, “O skhodimosti ryadov nad lokalnymi polyami”, Trudy Sankt-Peterburgskogo mat. obsch., 3, 1995, 260–282 | MR | Zbl

[10] I. R. Shafarevich, “Obschii zakon vzaimnosti”, Matem. sb., 26(68):1 (1950), 113–146 | MR | Zbl