Ultrasolvable covering of the group $Z_2$ by the groups $Z_8$, $Z_{16}$ and~$Q_8$
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 28, Tome 435 (2015), pp. 47-72

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct infinite series of non-trivial ultrasolvable embedding problems with cyclic kernel of order $8,16$ and quaternion kernel of order $8$. Moreover, we discover $2$-local non-split universally solvable embedding problems of a quadratic extension into a Galois algebra whose kernel is generalized quaternion or cyclic.
@article{ZNSL_2015_435_a3,
     author = {D. D. Kiselev},
     title = {Ultrasolvable covering of the group $Z_2$ by the groups $Z_8$, $Z_{16}$ and~$Q_8$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {47--72},
     publisher = {mathdoc},
     volume = {435},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_435_a3/}
}
TY  - JOUR
AU  - D. D. Kiselev
TI  - Ultrasolvable covering of the group $Z_2$ by the groups $Z_8$, $Z_{16}$ and~$Q_8$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2015
SP  - 47
EP  - 72
VL  - 435
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2015_435_a3/
LA  - ru
ID  - ZNSL_2015_435_a3
ER  - 
%0 Journal Article
%A D. D. Kiselev
%T Ultrasolvable covering of the group $Z_2$ by the groups $Z_8$, $Z_{16}$ and~$Q_8$
%J Zapiski Nauchnykh Seminarov POMI
%D 2015
%P 47-72
%V 435
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2015_435_a3/
%G ru
%F ZNSL_2015_435_a3
D. D. Kiselev. Ultrasolvable covering of the group $Z_2$ by the groups $Z_8$, $Z_{16}$ and~$Q_8$. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 28, Tome 435 (2015), pp. 47-72. http://geodesic.mathdoc.fr/item/ZNSL_2015_435_a3/