Stacked decomposition theorem for modules over serial left noetherian rings
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 28, Tome 435 (2015), pp. 42-46 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We prove the stacked decomposition theorem for infinitely generated left modules over serial left noetherian rings.
@article{ZNSL_2015_435_a2,
     author = {I. M. Zilberbord},
     title = {Stacked decomposition theorem for modules over serial left noetherian rings},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {42--46},
     year = {2015},
     volume = {435},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_435_a2/}
}
TY  - JOUR
AU  - I. M. Zilberbord
TI  - Stacked decomposition theorem for modules over serial left noetherian rings
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2015
SP  - 42
EP  - 46
VL  - 435
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2015_435_a2/
LA  - ru
ID  - ZNSL_2015_435_a2
ER  - 
%0 Journal Article
%A I. M. Zilberbord
%T Stacked decomposition theorem for modules over serial left noetherian rings
%J Zapiski Nauchnykh Seminarov POMI
%D 2015
%P 42-46
%V 435
%U http://geodesic.mathdoc.fr/item/ZNSL_2015_435_a2/
%G ru
%F ZNSL_2015_435_a2
I. M. Zilberbord. Stacked decomposition theorem for modules over serial left noetherian rings. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 28, Tome 435 (2015), pp. 42-46. http://geodesic.mathdoc.fr/item/ZNSL_2015_435_a2/

[1] A. I. Generalov, I. M. Zilberbord, “Bazisnye podmoduli modulei nad polutsepnymi neterovymi sprava koltsami. I”, Zap. nauchn. semin. POMI, 272, 2000, 129–143 | MR | Zbl

[2] A. I. Generalov, I. M. Zilberbord, “Bazisnye podmoduli modulei nad polutsepnymi neterovymi sprava koltsami. II”, Zap. nauchn. semin. POMI, 281, 2001, 154–169 | MR | Zbl

[3] A. I. Generalov, I. M. Zilberbord, “Popolnenie modulei nad polutsepnymi neterovymi sprava koltsami”, Zap. nauchn. semin. POMI, 281, 2001, 170–185 | MR | Zbl

[4] I. M. Zilberbord, “Chistoty i chisto-in'ektivnye moduli nad polutsepnymi nëterovymi sprava koltsami”, Zap. nauchn. semin. POMI, 289, 2002, 214–232 | MR | Zbl

[5] J. M. Cohen, H. Gluck, “Stacked bases for modules over principal ideal domains”, J. Algebra, 14 (1970), 493–505 | DOI | MR | Zbl

[6] P. Hill, C. Megibben, “Generalizations of the stacked bases theorem”, Trans. Amer. Math. Soc., 312:1 (1989), 377–402 | DOI | MR | Zbl

[7] A. I. Generalov, M. V. Zheludev, “Teorema o soglasovannykh bazisakh v modulyakh nad dedekindovymi koltsami”, Algebra i analiz, 7:4 (1995), 157–175 | MR | Zbl

[8] A. I. Generalov, M. V. Zheludev, “Soglasovannye razlozheniya modulei nad ogranichennymi dedekindovymi pervichnymi koltsami”, Algebra i analiz, 9:4 (1997), 47–62 | MR | Zbl

[9] P. Astuti, H. K. Wimmer, Stacked submodules of torsion modules over discrete valuation domains and h-independent bases, http://www.mathematik.uni-wuerzburg.de/~wimmer/ab90/download/bullaustr3128.pdf

[10] L. Fuchs, Sang Bum Lee, “Stacked bases over h-local Prüfer domains”, Abelian groups and modules, Contemporary Mathematics, 273, 2001, 129–135 | DOI | MR

[11] L. Salce, “Stacked bases for homogeneous completely decomposable groups”, Commun. Algebra, 29:6 (2001), 2575–2588 | DOI | MR | Zbl

[12] Yu. A. Drozd, “Ob obobschenno odnoryadnykh koltsakh”, Matem. zametki, 18:5 (1975), 705–710 | MR | Zbl

[13] R. B. Warfield, “Serial rings and finitely presented modules”, J. Algebra, 37:2 (1975), 187–222 | DOI | MR | Zbl

[14] K. Feis, Algebra: koltsa, moduli i kategorii, v. 2, Mir, M., 1979 | MR

[15] V. V. Kirichenko, Obobschenno odnoryadnye koltsa, Preprint IM-75-1, In-t matem. AN USSR, Kiev, 1975, 58 pp.