Hochschild cohomology for algebras of semidihedral type. V. The family $SD(3\mathcal K)$
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 28, Tome 435 (2015), pp. 5-32 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We compute the Hochschild cohomology groups for algebras of semidihedral type from the family $SD(3\mathcal K)$ (within the famous K. Erdmann's classification). Our calculation relies on “a bimodule resalution” for algebras of the above family.
@article{ZNSL_2015_435_a0,
     author = {A. I. Generalov and I. M. Zilberbord},
     title = {Hochschild cohomology for algebras of semidihedral {type.~V.} {The} family~$SD(3\mathcal K)$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--32},
     year = {2015},
     volume = {435},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_435_a0/}
}
TY  - JOUR
AU  - A. I. Generalov
AU  - I. M. Zilberbord
TI  - Hochschild cohomology for algebras of semidihedral type. V. The family $SD(3\mathcal K)$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2015
SP  - 5
EP  - 32
VL  - 435
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2015_435_a0/
LA  - ru
ID  - ZNSL_2015_435_a0
ER  - 
%0 Journal Article
%A A. I. Generalov
%A I. M. Zilberbord
%T Hochschild cohomology for algebras of semidihedral type. V. The family $SD(3\mathcal K)$
%J Zapiski Nauchnykh Seminarov POMI
%D 2015
%P 5-32
%V 435
%U http://geodesic.mathdoc.fr/item/ZNSL_2015_435_a0/
%G ru
%F ZNSL_2015_435_a0
A. I. Generalov; I. M. Zilberbord. Hochschild cohomology for algebras of semidihedral type. V. The family $SD(3\mathcal K)$. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 28, Tome 435 (2015), pp. 5-32. http://geodesic.mathdoc.fr/item/ZNSL_2015_435_a0/

[1] K. Erdmann, Blocks of tame representation type and related algebras, Lect. Notes Math., 1428, 1990 | MR | Zbl

[2] A. I. Generalov, “Kogomologii Khokhshilda algebr diedralnogo tipa, I: seriya $D(3\mathcal K)$ v kharakteristike 2”, Algebra i analiz, 16:6 (2004), 53–122 | MR | Zbl

[3] A. I. Generalov, “Kogomologii Khokhshilda algebr diedralnogo tipa. II. Lokalnye algebry”, Zap. nauchn. semin. POMI, 375, 2010, 92–129 | MR | Zbl

[4] A. I. Generalov, “Kogomologii Khokhshilda algebr diedralnogo tipa, III. Lokalnye algebry v kharakteristike 2”, Vestnik S.-Peterburgskogo un-ta. Ser. 1. Mat., mekh., astron., 2010, no. 1, 28–38 | MR | Zbl

[5] A. I. Generalov, N. Yu. Kosovskaya, “Kogomologii Khokhshilda algebr diedralnogo tipa. IV. Seriya $D(2\mathcal B)(k,s,0)$”, Zap. nauchn. semin. POMI, 423, 2014, 67–104

[6] A. I. Generalov, “Kogomologii Khokhshilda algebr poludiedralnogo tipa. I. Gruppovye algebry poludiedralnykh grupp”, Algebra i analiz, 21:2 (2009), 1–51 | MR | Zbl

[7] A. I. Generalov, “Kogomologii Khokhshilda algebr poludiedralnogo tipa, II. Lokalnye algebry”, Zap. nauchn. semin. POMI, 386, 2011, 144–202 | MR

[8] A. I. Generalov, “Kogomologii Khokhshilda algebr poludiedralnogo tipa. III. Seriya $SD(2\mathcal B)_2$ v kharakteristike 2”, Zap. nauchn. semin. POMI, 400, 2012, 133–157 | MR

[9] A. I. Generalov, “Kogomologii Khokhshilda algebr poludiedralnogo tipa. IV. Algebra kogomologii dlya serii $SD(2\mathcal B)_2(k,t,c)$ pri $c=0$”, Zap. nauchn. semin. POMI, 413, 2013, 45–92 | MR

[10] A. I. Generalov, “Kogomologii Khokhshilda algebr kvaternionnogo tipa. I: obobschennye gruppy kvaternionov”, Algebra i analiz, 18:1 (2006), 55–107 | MR | Zbl

[11] A. I. Generalov, A. A. Ivanov, S. O. Ivanov, “Kogomologii Khokhshilda algebr kvaternionnogo tipa. II. Seriya $Q(2\mathcal B)_1$ v kharakteristike 2”, Zap. nauchn. semin. POMI, 349, 2007, 53–134

[12] A. I. Generalov, “Kogomologii Khokhshilda algebr kvaternionnogo tipa. III. Algebry s malym parametrom”, Zap. nauchn. semin. POMI, 356, 2008, 46–84 | MR | Zbl

[13] A. A. Ivanov, “Kogomologii Khokhshilda algebr kvaternionnogo tipa: seriya $Q(2\mathcal B)_1(k,s,a,c)$ nad polem kharakteristiki ne 2”, Vestnik S.-Peterburgskogo un-ta. Ser. 1. Mat., mekh., astron., 2010, no. 1, 63–72 | Zbl

[14] A. I. Generalov, M. A. Kachalova, “Bimodulnaya rezolventa algebry Mëbiusa”, Zap. nauchn. semin. POMI, 321, 2005, 36–66 | MR | Zbl

[15] M. A. Kachalova, “Kogomologii Khokhshilda algebry Mëbiusa”, Zap. nauchn. semin. POMI, 330, 2006, 173–200 | MR | Zbl

[16] M. A. Pustovykh, “Koltso kogomologii Khokhshilda algebry Mëbiusa”, Zap. nauchn. semin. POMI, 388, 2011, 210–246 | MR

[17] Yu. V. Volkov, A. I. Generalov, “Kogomologii Khokhshilda samoin'ektivnykh algebr drevesnogo tipa $D_n$. I”, Zap. nauchn. semin. POMI, 343, 2007, 121–182 | MR

[18] Yu. V. Volkov, “Kogomologii Khokhshilda samoin'ektivnykh algebr drevesnogo tipa $D_n$. II”, Zap. nauchn. semin. POMI, 365, 2009, 63–121 | MR | Zbl

[19] Yu. V. Volkov, A. I. Generalov, “Kogomologii Khokhshilda samoin'ektivnykh algebr drevesnogo tipa $D_n$. III”, Zap. nauchn. semin. POMI, 386, 2011, 100–128 | MR

[20] Yu. V. Volkov, “Kogomologii Khokhshilda nestandartnykh samoin'ektivnykh algebr drevesnogo tipa $D_n$”, Zap. nauchn. semin. POMI, 388, 2011, 48–99 | MR

[21] Yu. V. Volkov, “Algebra kogomologii Khokhshilda dlya odnoi serii samoin'ektivnykh algebr drevesnogo tipa $D_n$”, Algebra i analiz, 23:5 (2011), 99–139 | MR

[22] Yu. V. Volkov, “Kogomologii Khokhshilda samoin'ektivnykh algebr drevesnogo tipa $D_n$. IV”, Zap. nauchn. semin. POMI, 388, 2011, 100–118 | MR

[23] Yu. V. Volkov, “Kogomologii Khokhshilda samoin'ektivnykh algebr drevesnogo tipa $D_n$. V”, Zap. nauchn. semin. POMI, 394, 2011, 140–173 | MR

[24] M. A. Pustovykh, “Koltso kogomologii Khokhshilda samoin'ektivnykh algebr drevesnogo tipa $E_6$”, Zap. nauchn. semin. POMI, 423, 2014, 205–243

[25] A. I. Generalov, N. Yu. Kosovskaya, “Kogomologii Khokhshilda algebr Lyu–Shultsa”, Algebra i analiz, 18:4 (2006), 39–82 | MR | Zbl

[26] Yu. V. Volkov, A. I. Generalov, S. O. Ivanov, “O postroenii bimodulnykh rezolvent s pomoschyu lemmy Khappelya”, Zap. nauchn. semin. POMI, 375, 2010, 61–70 | MR | Zbl

[27] A. I. Generalov, “Kogomologii algebr poludiedralnogo tipa, III: seriya $SD(3\mathcal K)$”, Zap. nauchn. semin. POMI, 305, 2003, 84–100 | MR | Zbl