@article{ZNSL_2015_434_a8,
author = {A. N. Medvedev},
title = {Drop of the smoothness of an outer function compared to the smoothness of its modulus, under restrictions on the size of boundary values},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {101--115},
year = {2015},
volume = {434},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_434_a8/}
}
TY - JOUR AU - A. N. Medvedev TI - Drop of the smoothness of an outer function compared to the smoothness of its modulus, under restrictions on the size of boundary values JO - Zapiski Nauchnykh Seminarov POMI PY - 2015 SP - 101 EP - 115 VL - 434 UR - http://geodesic.mathdoc.fr/item/ZNSL_2015_434_a8/ LA - ru ID - ZNSL_2015_434_a8 ER -
%0 Journal Article %A A. N. Medvedev %T Drop of the smoothness of an outer function compared to the smoothness of its modulus, under restrictions on the size of boundary values %J Zapiski Nauchnykh Seminarov POMI %D 2015 %P 101-115 %V 434 %U http://geodesic.mathdoc.fr/item/ZNSL_2015_434_a8/ %G ru %F ZNSL_2015_434_a8
A. N. Medvedev. Drop of the smoothness of an outer function compared to the smoothness of its modulus, under restrictions on the size of boundary values. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 43, Tome 434 (2015), pp. 101-115. http://geodesic.mathdoc.fr/item/ZNSL_2015_434_a8/
[1] C. Bennett, R. Sharpley, Interpolation of operators, Academic Press, 1988 | MR | Zbl
[2] G. Ya. Bomash, “Mnozhestva pika dlya analiticheskikh klassov Geldera”, Zap. nauchn. semin. LOMI, 157, 1987, 129–136 | MR | Zbl
[3] D. W. Boyd, “A class of operators on the Lorentz spaces $M(\Phi)$”, Canad. J. Math., 19 (1967), 839–841 | DOI | MR | Zbl
[4] K. M. Dyakonov, “Equivalent norms on Lipschitz-type spaces of holomorphic functions”, Acta Mathematica, 178:2 (1997), 143–167 | DOI | MR | Zbl
[5] V. P. Khavin,, “Obobschenie teoremy Privalova–Zigmunda o module nepreryvnosti sopryazhennoi funktsii”, Izv. Akad. nauk Armyanskoi SSR, seriya Matematika, 1971, no. 6, 252–258, 265–287 | Zbl
[6] S. G. Krein, Yu. I. Petunin, E. M. Semënov, Interpolyatsiya lineinykh operatorov, M., 1978 | MR
[7] N. A. Shirokov,, “Dostatochnye usloviya dlya gelderovskoi gladkosti funktsii”, Algebra i analiz, 25:3 (2013), 200–206 | MR | Zbl
[8] S. Spanne, “Some function spaces defined using the mean oscillation over cubes”, Annali della Scuola Normale Superiore di Pisa – Classe di Scienze, 19:4 (1965), 593–608 | MR | Zbl
[9] A. V. Vasin, S. V. Kislyakov, A. N. Medvedev, “Lokalnaya gladkost analiticheskoi funktsii v sravnenii s gladkostyu ee modulya”, Algebra i analiz, 25:3 (2013), 52–85 | MR | Zbl