Sharp Bernstein type inequalities for splines in the mean square metrics
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 43, Tome 434 (2015), pp. 82-90
Cet article a éte moissonné depuis la source Math-Net.Ru
We give an elementary proof of the sharp Bernstein type inequality $$ \|f^{(s)}\|_2\le\frac{n^s}{2^s}\left(\frac{\mathcal K_{2r+1-2s}}{\mathcal K_{2r+1}}\right)^{1/2}\|\delta^s_\frac\pi n f\|_2. $$ Here $n,r,s\in\mathbb N$, $f$ is a $2\pi$-periodic spline of order $r$ and of minimal defect with nodes $\frac{j\pi}n$ ($j\in\mathbb Z$), $\delta^s_h$ is the difference operator of order $s$ with step $h$, and the $\mathcal K_m$ are the Favard constants. A similar inequality for the space $L_2(\mathbb R)$ is also established.
@article{ZNSL_2015_434_a6,
author = {O. L. Vinogradov},
title = {Sharp {Bernstein} type inequalities for splines in the mean square metrics},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {82--90},
year = {2015},
volume = {434},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_434_a6/}
}
O. L. Vinogradov. Sharp Bernstein type inequalities for splines in the mean square metrics. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 43, Tome 434 (2015), pp. 82-90. http://geodesic.mathdoc.fr/item/ZNSL_2015_434_a6/
[1] N. P. Korneichuk, V. F. Babenko, A. A. Ligun, Ekstremalnye svoistva polinomov i splainov, Naukova dumka, Kiev, 1992 | MR
[2] I. J. Schoenberg, Cardinal spline intepolation, 2 ed., SIAM, Philadelphia, 1993
[3] V. A. Zheludev, “Integral representation of slowly growing equidistant splines”, Approximation and its applications, 14:4 (1998), 66–88 | MR | Zbl
[4] Fang Gensun, “Approximating properties of entire functions of exponential type”, J. Math. Anal. Appl., 201 (1996), 642–659 | DOI | MR | Zbl
[5] F. Dubeau, J. Savoie, “On the roots of orthogonal polynomials and Euler–Frobenius polynomials”, J. Math. anal. Appl., 196 (1995), 84–98 | DOI | MR | Zbl