Sharp Bernstein type inequalities for splines in the mean square metrics
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 43, Tome 434 (2015), pp. 82-90 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We give an elementary proof of the sharp Bernstein type inequality $$ \|f^{(s)}\|_2\le\frac{n^s}{2^s}\left(\frac{\mathcal K_{2r+1-2s}}{\mathcal K_{2r+1}}\right)^{1/2}\|\delta^s_\frac\pi n f\|_2. $$ Here $n,r,s\in\mathbb N$, $f$ is a $2\pi$-periodic spline of order $r$ and of minimal defect with nodes $\frac{j\pi}n$ ($j\in\mathbb Z$), $\delta^s_h$ is the difference operator of order $s$ with step $h$, and the $\mathcal K_m$ are the Favard constants. A similar inequality for the space $L_2(\mathbb R)$ is also established.
@article{ZNSL_2015_434_a6,
     author = {O. L. Vinogradov},
     title = {Sharp {Bernstein} type inequalities for splines in the mean square metrics},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {82--90},
     year = {2015},
     volume = {434},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_434_a6/}
}
TY  - JOUR
AU  - O. L. Vinogradov
TI  - Sharp Bernstein type inequalities for splines in the mean square metrics
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2015
SP  - 82
EP  - 90
VL  - 434
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2015_434_a6/
LA  - ru
ID  - ZNSL_2015_434_a6
ER  - 
%0 Journal Article
%A O. L. Vinogradov
%T Sharp Bernstein type inequalities for splines in the mean square metrics
%J Zapiski Nauchnykh Seminarov POMI
%D 2015
%P 82-90
%V 434
%U http://geodesic.mathdoc.fr/item/ZNSL_2015_434_a6/
%G ru
%F ZNSL_2015_434_a6
O. L. Vinogradov. Sharp Bernstein type inequalities for splines in the mean square metrics. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 43, Tome 434 (2015), pp. 82-90. http://geodesic.mathdoc.fr/item/ZNSL_2015_434_a6/

[1] N. P. Korneichuk, V. F. Babenko, A. A. Ligun, Ekstremalnye svoistva polinomov i splainov, Naukova dumka, Kiev, 1992 | MR

[2] I. J. Schoenberg, Cardinal spline intepolation, 2 ed., SIAM, Philadelphia, 1993

[3] V. A. Zheludev, “Integral representation of slowly growing equidistant splines”, Approximation and its applications, 14:4 (1998), 66–88 | MR | Zbl

[4] Fang Gensun, “Approximating properties of entire functions of exponential type”, J. Math. Anal. Appl., 201 (1996), 642–659 | DOI | MR | Zbl

[5] F. Dubeau, J. Savoie, “On the roots of orthogonal polynomials and Euler–Frobenius polynomials”, J. Math. anal. Appl., 196 (1995), 84–98 | DOI | MR | Zbl