Blaschke product for a Hilbert space with Schwarz–Pick kernel
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 43, Tome 434 (2015), pp. 68-81 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

For an analog of a Blaschke product for a Hilbert space with Schwarz–Pick kernel (this is a wider class than the class of Hilbert spaces with Nevanlinna–Pick kernel), it is proved that only finitely many elementary multipliers may have zeros on a fixed compact set. It is proved also that the partial Blaschke products multiplied by an appropriate reproducing kernel converge in the Hilbert space. These abstract theorems are applied to the weighted Hardy spaces in the unit disk and to the Drury–Arveson spaces.
@article{ZNSL_2015_434_a5,
     author = {I. V. Videnskii},
     title = {Blaschke product for {a~Hilbert} space with {Schwarz{\textendash}Pick} kernel},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {68--81},
     year = {2015},
     volume = {434},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_434_a5/}
}
TY  - JOUR
AU  - I. V. Videnskii
TI  - Blaschke product for a Hilbert space with Schwarz–Pick kernel
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2015
SP  - 68
EP  - 81
VL  - 434
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2015_434_a5/
LA  - ru
ID  - ZNSL_2015_434_a5
ER  - 
%0 Journal Article
%A I. V. Videnskii
%T Blaschke product for a Hilbert space with Schwarz–Pick kernel
%J Zapiski Nauchnykh Seminarov POMI
%D 2015
%P 68-81
%V 434
%U http://geodesic.mathdoc.fr/item/ZNSL_2015_434_a5/
%G ru
%F ZNSL_2015_434_a5
I. V. Videnskii. Blaschke product for a Hilbert space with Schwarz–Pick kernel. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 43, Tome 434 (2015), pp. 68-81. http://geodesic.mathdoc.fr/item/ZNSL_2015_434_a5/

[1] J. Agler, “Nevanlinna–Pick interpolation on Sobolev space”, Proc. Amer. Math. Soc., 108 (1990), 341–351 | DOI | MR | Zbl

[2] J. Agler, J. E. McCarthy, Pick Interpolation and Hilbert Function Spaces, Graduate Studies in Mathematics, 44, Amer. Math. Soc., Providence, RI, 2002 | MR | Zbl

[3] E. Amar, “Extension de fonctions analytiques avec estimation”, Arkiv för mat., 17:1 (1979), 123–138 | DOI | MR | Zbl

[4] W. B. Arveson, “Subalgebras of $C^*$-algebras. III: Multivariable operator theory”, Acta Math., 181 (1998), 159–228 | DOI | MR | Zbl

[5] S. W. Drury, “A generalization of von Neumann's inequality to the complex ball”, Proc. Amer. Math. Soc., 68 (1978), 300–304 | MR | Zbl

[6] D. E. Marshall, C. Sundberg, Interpolating sequences for the multipliers of the Dirichlet space, Preprint, Available at , 1993 http://www.math.washington.edu/~marshall/preprints/preprints.html

[7] K. Seip, Interpolation and Sampling in Spaces of Analytic Functions, University lecture series, 33, Amer. Math. Soc., Providence, R.I., 2004 | MR | Zbl

[8] H. S. Shapiro, A. L. Shields, “On the zeros of functions with finite Dirichlet integral and some related function spaces”, Math. Z., 80 (1962), 217–229 | DOI | MR | Zbl

[9] N. A. Shirokov, “Ob odnom analoge ugla Shtoltsa dlya edinichnogo shara v $\mathbb C^n$”, Zap. nauchn. semin. POMI, 247, 1997, 276–297 | MR | Zbl

[10] I. V. Videnskii, “Ob analoge proizvedeniya Blyashke dlya gilbertova prostranstva s yadrom Nevanlinny–Pika”, Zap. nauchn. semin. POMI, 424, 2014, 126–140

[11] I. V. Videnskii, “O nulyakh proizvodnoi ratsionalnoi funktsii i koinvariantnykh podprostranstvakh operatora sdviga v prostranstve Bergmana”, Zap. nauchn. semin. POMI, 282, 2001, 26–33 | MR | Zbl