@article{ZNSL_2015_434_a4,
author = {A. V. Vasin},
title = {Regularity of the {Beurling} transform in smooth domains},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {57--67},
year = {2015},
volume = {434},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_434_a4/}
}
A. V. Vasin. Regularity of the Beurling transform in smooth domains. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 43, Tome 434 (2015), pp. 57-67. http://geodesic.mathdoc.fr/item/ZNSL_2015_434_a4/
[1] V. Cruz, J. Mateu, J. Orobitg, “Beltrami equation with coefficient in Sobolev and Besov spaces”, Canad. J. Math., 65 (2013), 1217–1235 | DOI | MR | Zbl
[2] V. Crus, X. Tolsa, “Smoothness of the Beurling transform in Lipschitz domains”, J. Funct. Anal., 262:10 (2012), 4423–4457 | DOI | MR
[3] N. Depauw, “Poche de tourbillon pour Euler 2D dans un ouvert à bord”, J. Math. Pures Appl., 78:3 (1999), 313–351 | DOI | MR | Zbl
[4] T. Iwaniec, “The best constant in a BMO-inequality for the Beurling–Ahlfors transform”, Mich. Math. J., 34 (1987), 407–434 | DOI | MR | Zbl
[5] S. Kislyakov, N. Kruglyak, Extremal problems in interpolation theory, Whitney–Besicovitch coverings, and singular integrals, IMPAN Monogr. Mat. (N.S.), 74, Birkhauser/Springer Basel AG, Basel, 2013, x+316 pp. | MR | Zbl
[6] J. Mateu, J. Orobitg, J. Verdera, “Extra cancellation of even Calderon-Zygmund operators and quasiconformal mappings”, J. Math. Pures Appl. (9), 91:4 (2009), 402–431 | DOI | MR | Zbl
[7] X. Tolsa, “Regularity of $C^1$ and Lipschitz domains in terms of the Beurling transform”, J. Math. Pures Appl. (9), 100:2 (2013), 137–165 | DOI | MR | Zbl
[8] A. Tumanov, Commutators of singular integrals, the Bergman projection, and boundary regularity of elliptic equations in the plane, arXiv: 1406.0258