Regularity of the Beurling transform in smooth domains
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 43, Tome 434 (2015), pp. 57-67 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The relationship between smoothness properties of the boundary of a domain $\Omega$ and the boundedness of the Beurling transform in the corresponding Lipschitz classes $\mathrm{Lip}(\omega)$ for the case of a Dini-regular modulus of continuity $\omega$ is studied. The result is sharp. Our motivation arises from the work of Mateu, Orobitg and Verdera.
@article{ZNSL_2015_434_a4,
     author = {A. V. Vasin},
     title = {Regularity of the {Beurling} transform in smooth domains},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {57--67},
     year = {2015},
     volume = {434},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_434_a4/}
}
TY  - JOUR
AU  - A. V. Vasin
TI  - Regularity of the Beurling transform in smooth domains
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2015
SP  - 57
EP  - 67
VL  - 434
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2015_434_a4/
LA  - ru
ID  - ZNSL_2015_434_a4
ER  - 
%0 Journal Article
%A A. V. Vasin
%T Regularity of the Beurling transform in smooth domains
%J Zapiski Nauchnykh Seminarov POMI
%D 2015
%P 57-67
%V 434
%U http://geodesic.mathdoc.fr/item/ZNSL_2015_434_a4/
%G ru
%F ZNSL_2015_434_a4
A. V. Vasin. Regularity of the Beurling transform in smooth domains. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 43, Tome 434 (2015), pp. 57-67. http://geodesic.mathdoc.fr/item/ZNSL_2015_434_a4/

[1] V. Cruz, J. Mateu, J. Orobitg, “Beltrami equation with coefficient in Sobolev and Besov spaces”, Canad. J. Math., 65 (2013), 1217–1235 | DOI | MR | Zbl

[2] V. Crus, X. Tolsa, “Smoothness of the Beurling transform in Lipschitz domains”, J. Funct. Anal., 262:10 (2012), 4423–4457 | DOI | MR

[3] N. Depauw, “Poche de tourbillon pour Euler 2D dans un ouvert à bord”, J. Math. Pures Appl., 78:3 (1999), 313–351 | DOI | MR | Zbl

[4] T. Iwaniec, “The best constant in a BMO-inequality for the Beurling–Ahlfors transform”, Mich. Math. J., 34 (1987), 407–434 | DOI | MR | Zbl

[5] S. Kislyakov, N. Kruglyak, Extremal problems in interpolation theory, Whitney–Besicovitch coverings, and singular integrals, IMPAN Monogr. Mat. (N.S.), 74, Birkhauser/Springer Basel AG, Basel, 2013, x+316 pp. | MR | Zbl

[6] J. Mateu, J. Orobitg, J. Verdera, “Extra cancellation of even Calderon-Zygmund operators and quasiconformal mappings”, J. Math. Pures Appl. (9), 91:4 (2009), 402–431 | DOI | MR | Zbl

[7] X. Tolsa, “Regularity of $C^1$ and Lipschitz domains in terms of the Beurling transform”, J. Math. Pures Appl. (9), 100:2 (2013), 137–165 | DOI | MR | Zbl

[8] A. Tumanov, Commutators of singular integrals, the Bergman projection, and boundary regularity of elliptic equations in the plane, arXiv: 1406.0258