Regularity of the Beurling transform in smooth domains
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 43, Tome 434 (2015), pp. 57-67
Voir la notice de l'article provenant de la source Math-Net.Ru
The relationship between smoothness properties of the boundary of a domain $\Omega$ and the boundedness of the Beurling transform in the corresponding Lipschitz classes $\mathrm{Lip}(\omega)$ for the case of a Dini-regular modulus of continuity $\omega$ is studied. The result is sharp. Our motivation arises from the work of Mateu, Orobitg and Verdera.
@article{ZNSL_2015_434_a4,
author = {A. V. Vasin},
title = {Regularity of the {Beurling} transform in smooth domains},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {57--67},
publisher = {mathdoc},
volume = {434},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_434_a4/}
}
A. V. Vasin. Regularity of the Beurling transform in smooth domains. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 43, Tome 434 (2015), pp. 57-67. http://geodesic.mathdoc.fr/item/ZNSL_2015_434_a4/