Multiple sampling and interpolation in the classical Fock space
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 43, Tome 434 (2015), pp. 53-56
Cet article a éte moissonné depuis la source Math-Net.Ru
We study multiple sampling, interpolation and uniqueness for the classical Fock space in the case of unbounded multiplicities.
@article{ZNSL_2015_434_a3,
author = {A. Borichev and A. Hartmann and K. Kellay and X. Massaneda},
title = {Multiple sampling and interpolation in the classical {Fock} space},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {53--56},
year = {2015},
volume = {434},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_434_a3/}
}
TY - JOUR AU - A. Borichev AU - A. Hartmann AU - K. Kellay AU - X. Massaneda TI - Multiple sampling and interpolation in the classical Fock space JO - Zapiski Nauchnykh Seminarov POMI PY - 2015 SP - 53 EP - 56 VL - 434 UR - http://geodesic.mathdoc.fr/item/ZNSL_2015_434_a3/ LA - en ID - ZNSL_2015_434_a3 ER -
A. Borichev; A. Hartmann; K. Kellay; X. Massaneda. Multiple sampling and interpolation in the classical Fock space. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 43, Tome 434 (2015), pp. 53-56. http://geodesic.mathdoc.fr/item/ZNSL_2015_434_a3/
[1] S. Brekke, K. Seip, “Density theorems for sampling and interpolation in the Bargmann–Fock space. III”, Math. Scand., 73 (1993), 112–126 | MR | Zbl
[2] B. Ya. Levin, Lectures on entire functions, Translations of Mathematical Monographs, 150, American Mathematical Society, Providence, RI, 1996 | MR | Zbl
[3] K. Seip, “Density theorems for sampling and interpolation in the Bargmann–Fock space. I”, J. Reine Angew. Math., 429 (1992), 91–106 | MR | Zbl
[4] K. Seip, R. Wallstén, “Density theorems for sampling and interpolation in the Bargmann–Fock space. II”, J. Reine Angew. Math., 429 (1992), 107–113 | MR | Zbl
[5] K. Zhu, Analysis on Fock spaces, Graduate Texts in Mathematics, 263, Springer, New York, 2012 | DOI | MR | Zbl