Properties of the $l=1$ radial part of the Laplace operator in a special scalar product
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 43, Tome 434 (2015), pp. 32-52 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We develop self-adjoint extensions of the $l=1$ radial part of the Laplace operator in a special scalar product. The product arises as the transfer of the plain product from $\mathbb R^3 $ into the set of functions parametrizing one of the two components of the transverse vector field. Similar extensions are treated for the square of the inverse operator of the radial part in question.
@article{ZNSL_2015_434_a2,
     author = {T. A. Bolokhov},
     title = {Properties of the $l=1$ radial part of the {Laplace} operator in a~special scalar product},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {32--52},
     year = {2015},
     volume = {434},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_434_a2/}
}
TY  - JOUR
AU  - T. A. Bolokhov
TI  - Properties of the $l=1$ radial part of the Laplace operator in a special scalar product
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2015
SP  - 32
EP  - 52
VL  - 434
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2015_434_a2/
LA  - ru
ID  - ZNSL_2015_434_a2
ER  - 
%0 Journal Article
%A T. A. Bolokhov
%T Properties of the $l=1$ radial part of the Laplace operator in a special scalar product
%J Zapiski Nauchnykh Seminarov POMI
%D 2015
%P 32-52
%V 434
%U http://geodesic.mathdoc.fr/item/ZNSL_2015_434_a2/
%G ru
%F ZNSL_2015_434_a2
T. A. Bolokhov. Properties of the $l=1$ radial part of the Laplace operator in a special scalar product. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 43, Tome 434 (2015), pp. 32-52. http://geodesic.mathdoc.fr/item/ZNSL_2015_434_a2/

[1] B. Shutts, Geometricheskie metody matematicheskoi fiziki, Mir, M., 1984; E. L. Hill, “The Theory of Vector Spherical Harmonics”, Am. J. Phys., 22 (1954), 211 | DOI | MR | Zbl

[2] T. A. Bolokhov, “Rasshireniya kvadratichnoi formy vektornogo poperechnogo operatora Laplasa”, Zap. nauchn. semin. POMI, 433, 2015, 78–110

[3] K. Friedrichs, “Spektraltheorie halbbeschränkter Operatoren”, Math. Ann., 109 (1934), 465–487 ; M. Stone, Linear Transformations in Hilbert spaces and their Applications in Analysis, Amer. Math. Soc. Colloquim Publication, 15, Providence, R.I., 1932 | DOI | MR | MR | Zbl

[4] F. A. Berezin, L. D. Faddeev, “Zamechanie ob uravnenii Shredingera s singulyarnym potentsialom”, Doklady AN SSSR, 137:5 (1961), 1011–1014 | MR | Zbl

[5] J. Blank, P. Exner, M. Havlcek, Hilbert Space Operators in Quantum Physics, Springer, Netherlands, 2008 | MR | Zbl

[6] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, v. 1, Funktsionalnyi analiz, Mir, M., 1977 | MR

[7] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, v. 2, Garmonicheskii analiz i samosopryazhennost, Mir, M., 1978 | MR

[8] S. Albeverio, P. Kurasov, Singular Perturbation of Differential Operators. Solvable Schrödinger type Operators, Cambridge University Press, 2000 | MR