@article{ZNSL_2015_434_a2,
author = {T. A. Bolokhov},
title = {Properties of the $l=1$ radial part of the {Laplace} operator in a~special scalar product},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {32--52},
year = {2015},
volume = {434},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_434_a2/}
}
T. A. Bolokhov. Properties of the $l=1$ radial part of the Laplace operator in a special scalar product. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 43, Tome 434 (2015), pp. 32-52. http://geodesic.mathdoc.fr/item/ZNSL_2015_434_a2/
[1] B. Shutts, Geometricheskie metody matematicheskoi fiziki, Mir, M., 1984; E. L. Hill, “The Theory of Vector Spherical Harmonics”, Am. J. Phys., 22 (1954), 211 | DOI | MR | Zbl
[2] T. A. Bolokhov, “Rasshireniya kvadratichnoi formy vektornogo poperechnogo operatora Laplasa”, Zap. nauchn. semin. POMI, 433, 2015, 78–110
[3] K. Friedrichs, “Spektraltheorie halbbeschränkter Operatoren”, Math. Ann., 109 (1934), 465–487 ; M. Stone, Linear Transformations in Hilbert spaces and their Applications in Analysis, Amer. Math. Soc. Colloquim Publication, 15, Providence, R.I., 1932 | DOI | MR | MR | Zbl
[4] F. A. Berezin, L. D. Faddeev, “Zamechanie ob uravnenii Shredingera s singulyarnym potentsialom”, Doklady AN SSSR, 137:5 (1961), 1011–1014 | MR | Zbl
[5] J. Blank, P. Exner, M. Havlcek, Hilbert Space Operators in Quantum Physics, Springer, Netherlands, 2008 | MR | Zbl
[6] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, v. 1, Funktsionalnyi analiz, Mir, M., 1977 | MR
[7] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, v. 2, Garmonicheskii analiz i samosopryazhennost, Mir, M., 1978 | MR
[8] S. Albeverio, P. Kurasov, Singular Perturbation of Differential Operators. Solvable Schrödinger type Operators, Cambridge University Press, 2000 | MR