@article{ZNSL_2015_434_a10,
author = {D. M. Stolyarov},
title = {Dorronsoro's theorem and a~slight generalization},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {126--135},
year = {2015},
volume = {434},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_434_a10/}
}
D. M. Stolyarov. Dorronsoro's theorem and a slight generalization. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 43, Tome 434 (2015), pp. 126-135. http://geodesic.mathdoc.fr/item/ZNSL_2015_434_a10/
[1] V. I. Kolyada, “O vlozhenii prostranstv Soboleva”, Mat. Zam., 54:3 (1993), 48–71 | MR | Zbl
[2] V. G. Mazya, T. O. Shaposhnikova, “Teoriya multiplikatorov v prostranstvakh differentsiruemykh funktsii”, UMN, 38:3(231) (1983), 23–86 | MR | Zbl
[3] D. Adams, “A note on Riesz potentials”, Duke Math. J., 42 (1975), 765–778 | DOI | MR | Zbl
[4] J. R. Dorronsoro, “Differentiability properties of functions with bounded variation”, Indiana Univ. Math. J., 38:4 (1989), 1027–1045 | DOI | MR | Zbl
[5] W. G. Faris, “Weak Lebesgue spaces and quantum mechanical binding”, Duke Math. J., 43:2 (1976), 365–373 | DOI | MR | Zbl
[6] C. Fefferman, N. M. Riviere, Y. Sagher, “Interpolation between $H^p$ spaces: the real method”, Trans. Amer. Math. Soc., 191 (1974), 71–81 | MR
[7] L. Grafakos, Classical Fourier analysis, Springer, 2008 | MR | Zbl
[8] W. Gustin, “Boxing inequalities”, J. Math. Mech., 9 (1960), 229–239 | MR | Zbl
[9] Ky Fan, “Minimax theorems”, Proc. N. A. S., 39:1 (1953), 42–47 | DOI | MR | Zbl
[10] J. van Schaftingen, “Limiting Sobolev inequalities for vector fields and cancelling linear differential operators”, J. EMS, 15:3 (2013), 877–921 | MR | Zbl
[11] J. van Schaftingen, “Limiting Bourgain–Brezis estimates for systems of linear differential equations: Theme and variations”, J. fixed point th. appl., 15:2 (2014), 273–297 | DOI | MR | Zbl
[12] E. M. Stein, Harmonic analysis, real-variable methods, orthogonality and oscillatory integrals, Princeton University press, 1993 | MR | Zbl
[13] R. Strichartz, “$H^p$ Sobolev spaces”, Colloq. Math., 60/61 (1990), 129–139 | MR | Zbl