Sharp estimates of the deviation from Fourier--Haar sums for continuous functions of two variables
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 43, Tome 434 (2015), pp. 19-31
Voir la notice de l'article provenant de la source Math-Net.Ru
A sharp estimate of the deviation from partial Fourier–Haar sums for periodic continuous function in terms of the modulus of continuity is obtained.
@article{ZNSL_2015_434_a1,
author = {P. A. Andrianov},
title = {Sharp estimates of the deviation from {Fourier--Haar} sums for continuous functions of two variables},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {19--31},
publisher = {mathdoc},
volume = {434},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_434_a1/}
}
TY - JOUR AU - P. A. Andrianov TI - Sharp estimates of the deviation from Fourier--Haar sums for continuous functions of two variables JO - Zapiski Nauchnykh Seminarov POMI PY - 2015 SP - 19 EP - 31 VL - 434 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2015_434_a1/ LA - ru ID - ZNSL_2015_434_a1 ER -
P. A. Andrianov. Sharp estimates of the deviation from Fourier--Haar sums for continuous functions of two variables. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 43, Tome 434 (2015), pp. 19-31. http://geodesic.mathdoc.fr/item/ZNSL_2015_434_a1/