Sharp estimates of the deviation from Fourier–Haar sums for continuous functions of two variables
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 43, Tome 434 (2015), pp. 19-31
Cet article a éte moissonné depuis la source Math-Net.Ru
A sharp estimate of the deviation from partial Fourier–Haar sums for periodic continuous function in terms of the modulus of continuity is obtained.
@article{ZNSL_2015_434_a1,
author = {P. A. Andrianov},
title = {Sharp estimates of the deviation from {Fourier{\textendash}Haar} sums for continuous functions of two variables},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {19--31},
year = {2015},
volume = {434},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_434_a1/}
}
P. A. Andrianov. Sharp estimates of the deviation from Fourier–Haar sums for continuous functions of two variables. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 43, Tome 434 (2015), pp. 19-31. http://geodesic.mathdoc.fr/item/ZNSL_2015_434_a1/
[1] A. Haar, “Zur Theorie der orthogonalen Funktionensysteme”, Math. Ann., 69:3 (1910), 331–371 | DOI | MR | Zbl
[2] B. C. Kashin, A. A. Saakyan, Ortogonalnye ryady, Izd-vo AFTs, M., 1999
[3] N. P. Khoroshko, “Ravnomernoe priblizhenie polinomami po sisteme Khaara na klassakh nepreryvnykh funktsii”, Ukr. matem. zhurn., 22:5 (1970), 705–712 | Zbl
[4] B. I. Golubov, “Absolyutnaya skhodimost dvoinykh ryadov iz koeffitsientov Fure–Khaara funktsii ogranichennoi p-variatsii”, Izv. vuzov. Matem., 2012, no. 6, 3–13 | MR | Zbl
[5] I. Ya. Novikov, V. Yu. Protasov, M. A. Skopina, Teoriya vspleskov, Fizmatlit, M., 2005 | MR