Sharp estimates of the deviation from Fourier--Haar sums for continuous functions of two variables
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 43, Tome 434 (2015), pp. 19-31

Voir la notice de l'article provenant de la source Math-Net.Ru

A sharp estimate of the deviation from partial Fourier–Haar sums for periodic continuous function in terms of the modulus of continuity is obtained.
@article{ZNSL_2015_434_a1,
     author = {P. A. Andrianov},
     title = {Sharp estimates of the deviation from {Fourier--Haar} sums for continuous functions of two variables},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {19--31},
     publisher = {mathdoc},
     volume = {434},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_434_a1/}
}
TY  - JOUR
AU  - P. A. Andrianov
TI  - Sharp estimates of the deviation from Fourier--Haar sums for continuous functions of two variables
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2015
SP  - 19
EP  - 31
VL  - 434
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2015_434_a1/
LA  - ru
ID  - ZNSL_2015_434_a1
ER  - 
%0 Journal Article
%A P. A. Andrianov
%T Sharp estimates of the deviation from Fourier--Haar sums for continuous functions of two variables
%J Zapiski Nauchnykh Seminarov POMI
%D 2015
%P 19-31
%V 434
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2015_434_a1/
%G ru
%F ZNSL_2015_434_a1
P. A. Andrianov. Sharp estimates of the deviation from Fourier--Haar sums for continuous functions of two variables. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 43, Tome 434 (2015), pp. 19-31. http://geodesic.mathdoc.fr/item/ZNSL_2015_434_a1/