@article{ZNSL_2015_434_a0,
author = {A. B. Aleksandrov},
title = {Commutator {Lipschitz} functions and analytic},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {5--18},
year = {2015},
volume = {434},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_434_a0/}
}
A. B. Aleksandrov. Commutator Lipschitz functions and analytic. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 43, Tome 434 (2015), pp. 5-18. http://geodesic.mathdoc.fr/item/ZNSL_2015_434_a0/
[1] A. B. Aleksandrov, “Operatorno lipshitsevy funktsii i drobno-lineinye preobrazovaniya”, Zap. nauchn. semin. POMI, 401, 2012, 5–52 | MR
[2] A. B. Aleksandrov, V. V. Peller, “Estimates of operator moduli of continuity”, J. Funct. Anal., 261 (2011), 2741–2796 | DOI | MR | Zbl
[3] A. B. Aleksandrov, V. V. Peller, “Operator and commutator moduli of continuity for normal operators”, Proc. London Math. Soc. (3), 105:4 (2012), 821–851 | DOI | MR | Zbl
[4] M. Sh. Birman, M. Z. Solomyak, “Dvoinye operatornye integraly Stiltesa. III”, Teoriya funktsii. Spektralnaya teoriya. Rasprostranenie voln, Probl. mat. fiz., 6, LGU, L., 1973, 27–53 | MR
[5] M. S. Birman, M. Z. Solomyak, “Double operator integrals in a Hilbert space”, Integral Equations Operator Theory, 47 (2003), 131–168 | DOI | MR | Zbl
[6] F. W. Gehring, W. K. Hayman, A. Hinkkanen, “Analytic functions satisfying Holder conditions on the boundary”, J. Approx. Theory, 35:3 (1982), 243–249 | DOI | MR | Zbl
[7] U. Kheiman, P. Kennedi, Subgarmonicheskie funktsii, Mir, M., 1980
[8] B. E. Johnson, J. P. Williams, “The range of a normal derivation”, Pacific J. Math., 58 (1975), 105–122 | DOI | MR | Zbl
[9] H. Kamowitz, “On operators whose spectrum lies on a circle or a line”, Pacific J. Math., 20 (1967), 65–68 | DOI | MR | Zbl
[10] E. Kissin, V. S. Shulman, “Classes of operator-smooth functions. I. Operator-Lipschitz functions”, Proc. Edinb. Math. Soc. (2), 48 (2005), 151–173 | DOI | MR | Zbl
[11] E. Kissin, V. S. Shulman, “On fully operator Lipschitz functions”, J. Funct. Anal., 253 (2007), 711–28 | DOI | MR
[12] G. Pisier, Similarity problems and completely bounded maps, Lecture Notes in Mathematics, 1618, Second, expanded edition. Includes the solution to “The Halmos problem”, Springer-Verlag, Berlin, 2001 | DOI | MR | Zbl
[13] G. Pisier, “Grothendieck's theorem, past and present”, Bull. Amer. Math. Soc., 49:2 (2012), 237–323 | DOI | MR | Zbl
[14] P. M. Tamrazov, “Konturno-telesnye rezultaty dlya golomorfnykh funktsii”, Izvestiya AN SSSR. Ser. matem., 50:4 (1986), 835–848 | MR | Zbl