Commutator Lipschitz functions and analytic 
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 43, Tome 434 (2015), pp. 5-18
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $\mathfrak F_0$ and $\mathfrak F$ be perfect subsets of the complex plane $\mathbb C$. Assume that $\mathfrak{F_0\subset F}$ and the set $\Omega\stackrel{\mathrm{def}}=\mathfrak{F\setminus F}_0$ is open. We say that a continuous function $f\colon\mathfrak F\to\mathbb C$ is an analytic continuation of the function $f_0\colon\mathfrak F_0\to\mathbb C$ if $f$ is analytic on $\Omega$ and $f|\mathfrak F_0=f_0$. In the paper it is proved that if $\mathfrak F$ is bounded, then the commutator Lipschitz seminorm of the analytic continuation $f$ coincides with the commutator Lipschitz seminorm of $f_0$. The same is true for unbounded $\mathfrak F$ if some natural restrictions concerning the behavior of $f$ at infinity are imposed.
			
            
            
            
          
        
      @article{ZNSL_2015_434_a0,
     author = {A. B. Aleksandrov},
     title = {Commutator {Lipschitz} functions and analytic},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--18},
     publisher = {mathdoc},
     volume = {434},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_434_a0/}
}
                      
                      
                    A. B. Aleksandrov. Commutator Lipschitz functions and analytic. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 43, Tome 434 (2015), pp. 5-18. http://geodesic.mathdoc.fr/item/ZNSL_2015_434_a0/