Commutator Lipschitz functions and analytic
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 43, Tome 434 (2015), pp. 5-18

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathfrak F_0$ and $\mathfrak F$ be perfect subsets of the complex plane $\mathbb C$. Assume that $\mathfrak{F_0\subset F}$ and the set $\Omega\stackrel{\mathrm{def}}=\mathfrak{F\setminus F}_0$ is open. We say that a continuous function $f\colon\mathfrak F\to\mathbb C$ is an analytic continuation of the function $f_0\colon\mathfrak F_0\to\mathbb C$ if $f$ is analytic on $\Omega$ and $f|\mathfrak F_0=f_0$. In the paper it is proved that if $\mathfrak F$ is bounded, then the commutator Lipschitz seminorm of the analytic continuation $f$ coincides with the commutator Lipschitz seminorm of $f_0$. The same is true for unbounded $\mathfrak F$ if some natural restrictions concerning the behavior of $f$ at infinity are imposed.
@article{ZNSL_2015_434_a0,
     author = {A. B. Aleksandrov},
     title = {Commutator {Lipschitz} functions and analytic},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--18},
     publisher = {mathdoc},
     volume = {434},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_434_a0/}
}
TY  - JOUR
AU  - A. B. Aleksandrov
TI  - Commutator Lipschitz functions and analytic
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2015
SP  - 5
EP  - 18
VL  - 434
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2015_434_a0/
LA  - ru
ID  - ZNSL_2015_434_a0
ER  - 
%0 Journal Article
%A A. B. Aleksandrov
%T Commutator Lipschitz functions and analytic
%J Zapiski Nauchnykh Seminarov POMI
%D 2015
%P 5-18
%V 434
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2015_434_a0/
%G ru
%F ZNSL_2015_434_a0
A. B. Aleksandrov. Commutator Lipschitz functions and analytic. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 43, Tome 434 (2015), pp. 5-18. http://geodesic.mathdoc.fr/item/ZNSL_2015_434_a0/