The Einstein-like field theory and the renormalization of the shear modulus
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 23, Tome 433 (2015), pp. 196-203

Voir la notice de l'article provenant de la source Math-Net.Ru

The Einstein-like field theory is developed to describe elastic solid containing distribution of screw dislocations with finite-sized core. The core self-energy is given by the gauge-translational Lagrangian quadratic in the torsion tensor corresponding to three-dimensional Riemann–Cartan geometry. The Hilbert–Einstein gauge equation plays the role of unconventional incompatibility law. The stress tensor of the modified screw dislocations is smoothed out within the core. The renormalization of the shear modulus caused by proliferation of dipoles of non-singular screw dislocations is studied.
@article{ZNSL_2015_433_a9,
     author = {C. Malyshev},
     title = {The {Einstein-like} field theory and the renormalization of the shear modulus},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {196--203},
     publisher = {mathdoc},
     volume = {433},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_433_a9/}
}
TY  - JOUR
AU  - C. Malyshev
TI  - The Einstein-like field theory and the renormalization of the shear modulus
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2015
SP  - 196
EP  - 203
VL  - 433
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2015_433_a9/
LA  - en
ID  - ZNSL_2015_433_a9
ER  - 
%0 Journal Article
%A C. Malyshev
%T The Einstein-like field theory and the renormalization of the shear modulus
%J Zapiski Nauchnykh Seminarov POMI
%D 2015
%P 196-203
%V 433
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2015_433_a9/
%G en
%F ZNSL_2015_433_a9
C. Malyshev. The Einstein-like field theory and the renormalization of the shear modulus. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 23, Tome 433 (2015), pp. 196-203. http://geodesic.mathdoc.fr/item/ZNSL_2015_433_a9/