@article{ZNSL_2015_433_a9,
author = {C. Malyshev},
title = {The {Einstein-like} field theory and the renormalization of the shear modulus},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {196--203},
year = {2015},
volume = {433},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_433_a9/}
}
C. Malyshev. The Einstein-like field theory and the renormalization of the shear modulus. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 23, Tome 433 (2015), pp. 196-203. http://geodesic.mathdoc.fr/item/ZNSL_2015_433_a9/
[1] H. Kleinert, Gauge Fields in Condensed Matter, v. I, II, World Scientific, Singapore, 1989 | Zbl
[2] M. O. Katanaev, I. V. Volovich, “Theory of defects in solids and three-dimensional gravity”, Ann. Phys., 216 (1992), 1–28 | DOI | MR | Zbl
[3] M. O. Katanaev, “Geometric theory of defects”, Physics-Uspekhi, 48 (2005), 675–701 | DOI
[4] G. de Berredo-Peixoto, M. O. Katanaev, “Tube dislocations in gravity”, J. Math. Phys., 50 (2009), 042501 | DOI | MR | Zbl
[5] H. Kleinert, Multivalued Fields in Condensed Matter, Electromagnetism, and Gravitation, World Scientific, Singapore, 2008 | MR | Zbl
[6] C. Malyshev, “The $T(3)$-gauge model, the Einstein-like gauge equation, and Volterra dislocations with modified asymptotics”, Ann. Phys., 286 (2000), 249–277 | DOI | MR | Zbl
[7] C. Malyshev, “The Einsteinian $T(3)$-gauge approach and the stress tensor of the screw dislocation in the second order: avoiding the cut-off at the core”, J. Phys. A: Math. Theor., 40 (2007), 10657–10684 | DOI | MR | Zbl
[8] J. M. Kosterlitz, D. J. Thouless, “Ordering, metastability and phase transitions in two-dimensional systems”, J. Phys. C: Solid State Phys., 6 (1973), 1181–1203 | DOI
[9] A. Holz, J. T. N. Medeiros, “Melting transition of two-dimensional crystals”, Phys. Rev. B, 17 (1978), 1161–1174 | DOI
[10] D. R. Nelson, “Study of melting in two dimensions”, Phys. Rev. B, 18 (1978), 2318–2338 | DOI
[11] D. R. Nelson, B. I. Halperin, “Dislocation-mediated melting in two dimensions”, Phys. Rev. B, 19 (1979), 2457–2484 | DOI
[12] A. P. Young, “Melting and vector Coulomb gas in two dimensions”, Phys. Rev. B, 19 (1979), 1855–1866 | DOI
[13] S. Panyukov, Y. Rabin, “Statistical physics of interacting dislocation loops and their effect on the elastic moduli of isotropic solids”, Phys. Rev. B, 59 (1999), 13657–13671 | DOI
[14] K. J. Strandburg, “Two-dimensional melting”, Rev. Mod. Phys., 60 (1988), 161–207 | DOI
[15] C. Malyshev, “Non-singular screw dislocations as the Coulomb gas with smoothed out coupling and the renormalization of the shear modulus”, J. Phys. A: Math. Theor., 44 (2011), 285003 | DOI | MR | Zbl
[16] C. Malyshev, “Non-free gas of dipoles of non-singular screw dislocations and the shear modulus near the melting”, Ann. Phys., 351 (2014), 22–34 | DOI | MR
[17] D. S. Fisher, “Shear moduli and melting temperatures of two-dimensional electron crystals: low temperatures and high magnetic fields”, Phys. Rev. B, 26 (1982), 5009–5021 | DOI
[18] P. Kalinay, L. Šamaj, “Thermodynamic properties of the two-dimensional Coulomb gas in the low-density limit”, J. Stat. Phys., 106 (2002), 857–874 | DOI | MR | Zbl
[19] B. Jancovici, L. Šamaj, “Guest charge and potential fluctuations in two-dimensional classical Coulomb systems”, J. Stat. Phys., 131 (2008), 613–629 | DOI | MR | Zbl
[20] S. A. Gifford, G. Baym, “Dislocation-mediated melting in superfluid vortex lattices”, Phys. Rev. A, 78 (2008), 043607 | DOI
[21] H. H. von Grünberg, P. Keim, K. Zahn, G. Maret, “Elastic behavior of a two-dimensional crystal near melting”, Phys. Rev. Lett., 93 (2004), 255703 | DOI
[22] P. Dillmann, G. Maret, P. Keim, “Comparison of $2D$ melting criteria in a colloidal system”, J. Phys.: Condens. Matter., 24 (2012), 464118 | DOI
[23] H. Kleinert, “Melting of Wigner-like lattice of parallel polarized dipoles”, Europhys. Lett., 102 (2013), 56002 | DOI