The Einstein-like field theory and the renormalization of the shear modulus
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 23, Tome 433 (2015), pp. 196-203 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The Einstein-like field theory is developed to describe elastic solid containing distribution of screw dislocations with finite-sized core. The core self-energy is given by the gauge-translational Lagrangian quadratic in the torsion tensor corresponding to three-dimensional Riemann–Cartan geometry. The Hilbert–Einstein gauge equation plays the role of unconventional incompatibility law. The stress tensor of the modified screw dislocations is smoothed out within the core. The renormalization of the shear modulus caused by proliferation of dipoles of non-singular screw dislocations is studied.
@article{ZNSL_2015_433_a9,
     author = {C. Malyshev},
     title = {The {Einstein-like} field theory and the renormalization of the shear modulus},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {196--203},
     year = {2015},
     volume = {433},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_433_a9/}
}
TY  - JOUR
AU  - C. Malyshev
TI  - The Einstein-like field theory and the renormalization of the shear modulus
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2015
SP  - 196
EP  - 203
VL  - 433
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2015_433_a9/
LA  - en
ID  - ZNSL_2015_433_a9
ER  - 
%0 Journal Article
%A C. Malyshev
%T The Einstein-like field theory and the renormalization of the shear modulus
%J Zapiski Nauchnykh Seminarov POMI
%D 2015
%P 196-203
%V 433
%U http://geodesic.mathdoc.fr/item/ZNSL_2015_433_a9/
%G en
%F ZNSL_2015_433_a9
C. Malyshev. The Einstein-like field theory and the renormalization of the shear modulus. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 23, Tome 433 (2015), pp. 196-203. http://geodesic.mathdoc.fr/item/ZNSL_2015_433_a9/

[1] H. Kleinert, Gauge Fields in Condensed Matter, v. I, II, World Scientific, Singapore, 1989 | Zbl

[2] M. O. Katanaev, I. V. Volovich, “Theory of defects in solids and three-dimensional gravity”, Ann. Phys., 216 (1992), 1–28 | DOI | MR | Zbl

[3] M. O. Katanaev, “Geometric theory of defects”, Physics-Uspekhi, 48 (2005), 675–701 | DOI

[4] G. de Berredo-Peixoto, M. O. Katanaev, “Tube dislocations in gravity”, J. Math. Phys., 50 (2009), 042501 | DOI | MR | Zbl

[5] H. Kleinert, Multivalued Fields in Condensed Matter, Electromagnetism, and Gravitation, World Scientific, Singapore, 2008 | MR | Zbl

[6] C. Malyshev, “The $T(3)$-gauge model, the Einstein-like gauge equation, and Volterra dislocations with modified asymptotics”, Ann. Phys., 286 (2000), 249–277 | DOI | MR | Zbl

[7] C. Malyshev, “The Einsteinian $T(3)$-gauge approach and the stress tensor of the screw dislocation in the second order: avoiding the cut-off at the core”, J. Phys. A: Math. Theor., 40 (2007), 10657–10684 | DOI | MR | Zbl

[8] J. M. Kosterlitz, D. J. Thouless, “Ordering, metastability and phase transitions in two-dimensional systems”, J. Phys. C: Solid State Phys., 6 (1973), 1181–1203 | DOI

[9] A. Holz, J. T. N. Medeiros, “Melting transition of two-dimensional crystals”, Phys. Rev. B, 17 (1978), 1161–1174 | DOI

[10] D. R. Nelson, “Study of melting in two dimensions”, Phys. Rev. B, 18 (1978), 2318–2338 | DOI

[11] D. R. Nelson, B. I. Halperin, “Dislocation-mediated melting in two dimensions”, Phys. Rev. B, 19 (1979), 2457–2484 | DOI

[12] A. P. Young, “Melting and vector Coulomb gas in two dimensions”, Phys. Rev. B, 19 (1979), 1855–1866 | DOI

[13] S. Panyukov, Y. Rabin, “Statistical physics of interacting dislocation loops and their effect on the elastic moduli of isotropic solids”, Phys. Rev. B, 59 (1999), 13657–13671 | DOI

[14] K. J. Strandburg, “Two-dimensional melting”, Rev. Mod. Phys., 60 (1988), 161–207 | DOI

[15] C. Malyshev, “Non-singular screw dislocations as the Coulomb gas with smoothed out coupling and the renormalization of the shear modulus”, J. Phys. A: Math. Theor., 44 (2011), 285003 | DOI | MR | Zbl

[16] C. Malyshev, “Non-free gas of dipoles of non-singular screw dislocations and the shear modulus near the melting”, Ann. Phys., 351 (2014), 22–34 | DOI | MR

[17] D. S. Fisher, “Shear moduli and melting temperatures of two-dimensional electron crystals: low temperatures and high magnetic fields”, Phys. Rev. B, 26 (1982), 5009–5021 | DOI

[18] P. Kalinay, L. Šamaj, “Thermodynamic properties of the two-dimensional Coulomb gas in the low-density limit”, J. Stat. Phys., 106 (2002), 857–874 | DOI | MR | Zbl

[19] B. Jancovici, L. Šamaj, “Guest charge and potential fluctuations in two-dimensional classical Coulomb systems”, J. Stat. Phys., 131 (2008), 613–629 | DOI | MR | Zbl

[20] S. A. Gifford, G. Baym, “Dislocation-mediated melting in superfluid vortex lattices”, Phys. Rev. A, 78 (2008), 043607 | DOI

[21] H. H. von Grünberg, P. Keim, K. Zahn, G. Maret, “Elastic behavior of a two-dimensional crystal near melting”, Phys. Rev. Lett., 93 (2004), 255703 | DOI

[22] P. Dillmann, G. Maret, P. Keim, “Comparison of $2D$ melting criteria in a colloidal system”, J. Phys.: Condens. Matter., 24 (2012), 464118 | DOI

[23] H. Kleinert, “Melting of Wigner-like lattice of parallel polarized dipoles”, Europhys. Lett., 102 (2013), 56002 | DOI