Matrix factorization for solutions of the Yang–Baxter equation
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 23, Tome 433 (2015), pp. 156-185 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study solutions of the Yang–Baxter equation on a tensor product of an arbitrary finite-dimensional and an arbitrary infinite-dimensional representations of the rank one symmetry algebra. We consider the cases of the Lie algebra $sl_2$, the modular double (trigonometric deformation) and the Sklyanin algebra (elliptic deformation). The solutions are matrices with operator entries. The matrix elements are differential operators in the case of $sl_2$, finite-difference operators with trigonometric coefficients in the case of the modular double or finite-difference operators with coefficients constructed out of Jacobi theta functions in the case of the Sklyanin algebra. We find a new factorized form of the rational, trigonometric, and elliptic solutions, which drastically simplifies them. We show that they are products of several simply organized matrices and obtain for them explicit formulae.
@article{ZNSL_2015_433_a7,
     author = {S. E. Derkachov and D. I. Chicherin},
     title = {Matrix factorization for solutions of the {Yang{\textendash}Baxter} equation},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {156--185},
     year = {2015},
     volume = {433},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_433_a7/}
}
TY  - JOUR
AU  - S. E. Derkachov
AU  - D. I. Chicherin
TI  - Matrix factorization for solutions of the Yang–Baxter equation
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2015
SP  - 156
EP  - 185
VL  - 433
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2015_433_a7/
LA  - ru
ID  - ZNSL_2015_433_a7
ER  - 
%0 Journal Article
%A S. E. Derkachov
%A D. I. Chicherin
%T Matrix factorization for solutions of the Yang–Baxter equation
%J Zapiski Nauchnykh Seminarov POMI
%D 2015
%P 156-185
%V 433
%U http://geodesic.mathdoc.fr/item/ZNSL_2015_433_a7/
%G ru
%F ZNSL_2015_433_a7
S. E. Derkachov; D. I. Chicherin. Matrix factorization for solutions of the Yang–Baxter equation. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 23, Tome 433 (2015), pp. 156-185. http://geodesic.mathdoc.fr/item/ZNSL_2015_433_a7/

[1] R. J. Baxter, “Partition function of the eight-vertex lattice model”, Ann. Phys., 70 (1972), 193–228 | DOI | MR | Zbl

[2] V. V. Bazhanov, V. V. Mangazeev, S. M. Sergeev, “Faddeev-Volkov solution of the Yang-Baxter equation and discrete conformal symmetry”, Nucl. Phys. B, 784 (2007), 234 ; arXiv: hep-th/0703041 | DOI | MR | Zbl

[3] V. V. Bazhanov, S. M. Sergeev, “A master solution of the quantum Yang–Baxter equation and classical discrete integrable equations”, ATMP, 16 (2012), 65–95 ; arXiv: 1006.0651[math-ph] | MR | Zbl

[4] V. V. Bazhanov, Yu. G. Stroganov, “Chiral Potts model as a descendant of the six-vertex model”, J. Stat. Phys., 59 (1990), 799–817 | DOI | MR | Zbl

[5] A. G. Bytsko, J. Teschner, “$R$-operator, co-product and Haar-measure for the modular double of $U_q(sl(2,R))$”, Commun. Math. Phys., 240 (2003), 171–196 ; arXiv: math/0208191[math.QA] | DOI | MR | Zbl

[6] A. G. Bytsko, J. Teschner, “Quantization of models with non-compact quantum group symmetry: Modular XXZ magnet and lattice sinh-Gordon model”, J. Phys. A, 39 (2006), 12927 ; arXiv: hep-th/0602093 | DOI | MR | Zbl

[7] D. Chicherin, S. Derkachov, “The $R$-operator for a modular double”, J. Phys. A, 47 (2014), 115203 ; arXiv: 1309.0803[math-ph] | DOI | MR | Zbl

[8] D. Chicherin, S. E. Derkachov, V. P. Spiridonov, From principal series to finite-dimensional solutions of the Yang–Baxter equation, arXiv: 1411.7595[math-ph]

[9] D. Chicherin, S. E. Derkachov, V. P. Spiridonov, New elliptic solutions of the Yang–Baxter equation, arXiv: 1412.3383[math-ph]

[10] S. E. Derkachev, “Factorization of the $R$-matrix. I”, Zap. nauchn. sem. POMI, 335, POMI, SPb., 2006, 134–163 ; arXiv: math/0503396[math.QA] | MR

[11] S. Derkachov, D. Karakhanyan, R. Kirschner, “Yang–Baxter $R$-operators and parameter permutations”, Nucl. Phys. B, 785 (2007), 263 ; arXiv: hep-th/0703076 | DOI | MR | Zbl

[12] S. E. Derkachev, A. N. Manashov, “Obschee reshenie uravneniya Yanga–Bakstera s gruppoi simmetrii $SL(n,C)$”, Algebra i analiz, 21:4 (2009), 1–94 | MR | Zbl

[13] S. E. Derkachev, V. P. Spiridonov, “Uravnenie Yanga–Bakstera, perestanovki parametrov i ellipticheskii beta-integral”, UMN, 68:6(414) (2013), 59–106 ; arXiv: 1205.3520[math-ph] | DOI | MR | Zbl

[14] S. E. Derkachev, V. P. Spiridonov, “Konechnomernye predstavleniya ellipticheskogo modulyarnogo dublya”, TMF (to appear)

[15] L. D. Faddeev, “How the algebraic Bethe ansatz works for integrable models”, Quantum Symmetries/Symetries Qantiques, Proc. Les-Houches summer school, eds. A. Connes, K. Kawedzki, J. Zinn-Justin, North-Holland, 1998, 149–211 ; arXiv: hep-th/9605187 | MR

[16] L. D. Faddeev, “Discrete Heisenberg-Weyl group and modular group”, Lett. Math. Phys., 34 (1995), 249–254 ; arXiv: hep-th/9504111 | DOI | MR | Zbl

[17] L. D. Faddeev, “Modular double of a quantum group”, Conf. Moshé Flato 1999, v. I, Math. Phys. Stud., 21, Kluwer, Dordrecht, 2000, 149–156 ; arXiv: math/9912078[math.QA] | MR | Zbl

[18] L. D. Faddeev, R. M. Kashaev, A. Y. Volkov, “Strongly coupled quantum discrete Liouville theory. 1. Algebraic approach and duality”, Commun. Math. Phys., 219 (2001), 199–219 ; arXiv: hep-th/0006156 | DOI | MR | Zbl

[19] V. O. Tarasov, L. A. Takhtadzhyan, L. D. Faddeev, “Lokalnye gamiltoniany dlya integriruemykh kvantovykh modelei na reshetke”, TMF, 57:2 (1983), 163–181 | MR

[20] A. Yu. Volkov, L. D. Faddeev, “Yang-baksterizatsiya kvantovogo dilogarifma”, Zap. nauchn. sem. POMI, 224, POMI, SPb., 1995, 146–154 | MR | Zbl

[21] L. Hadasz, M. Pawelkiewicz, V. Schomerus, “Self-dual Continuous Series of Representations for $\mathcal U_q(sl(2))$ and $\mathcal U_q(osp(1|2))$”, JHEP, 1410 (2014), 91 ; arXiv: 1305.4596[hep-th] | DOI | MR

[22] M. Jimbo (ed.), Yang-Baxter equation in integrable systems, Adv. Ser. Math. Phys., 10, World Scientific, Singapore, 1990 | DOI | MR | Zbl

[23] S. M. Khoroshkin, V. N. Tolstoy, “Yangian Double”, Lett. Math. Phys., 36 (1996), 373–402 ; arXiv: hep-th/9406194 | DOI | MR | Zbl

[24] S. Khoroshkin, Z. Tsuboi, “The universal $R$-matrix and factorization of the $L$-operators related to the Baxter $Q$-operators”, J. Phys. A, 47 (2014), 192003 ; arXiv: 1401.0474[math-ph] | DOI | MR | Zbl

[25] I. Krichever, A. Zabrodin, “Vacuum curves of elliptic $L$-operators and representations of Sklyanin algebra”, Amer. Math. Soc. Transl. Ser. 2, 191 (1999), 199–221 ; arXiv: solv-int/9801022 | MR | Zbl

[26] P. P. Kulish, E. K. Sklyanin, “O resheniyakh uravneniya Yanga–Bakstera”, Zap. nauchn. sem. LOMI, 95, 1980, 129–160 | MR | Zbl

[27] P. P. Kulish, N. Y. Reshetikhin, E. K. Sklyanin, “Yang–Baxter Equation and Representation Theory. 1”, Lett. Math. Phys., 5 (1981), 393–403 | DOI | MR | Zbl

[28] P. P. Kulish, E. K. Sklyanin, “Quantum spectral transform method. Recent developments”, Lect. Notes Physics, 151, 1982, 61–119 | DOI | MR | Zbl

[29] V. V. Mangazeev, “On the Yang–Baxter equation for the six-vertex model”, Nucl. Phys. B, 882 (2014), 70 ; arXiv: 1401.6494[math-ph] | DOI | MR | Zbl

[30] V. V. Mangazeev, “$Q$-operators in the six-vertex model”, Nucl. Phys. B, 886 (2014), 166 ; arXiv: 1406.0662[math-ph] | DOI | MR

[31] M. Pawelkiewicz, V. Schomerus, P. Suchanek, “The universal Racah–Wigner symbol for $\mathrm U_q(osp(1|2))$”, JHEP, 1404 (2014), 079 ; arXiv: 1307.6866[hep-th] | DOI

[32] E. M. Rains, “$BC_n$-symmetric abelian functions”, Duke Math. J., 135:1 (2006), 99–180 | DOI | MR | Zbl

[33] H. Rosengren, “An elementary approach to $6j$-symbols (classical, quantum, rational, trigonometric, and elliptic)”, Ramanujan J., 13 (2007), 131–166 ; arXiv: math/0312310[math.CA] | DOI | MR | Zbl

[34] H. Rosengren, “Sklyanin invariant integration”, Internat. Math. Res. Notices, 60 (2004), 3207–3232 ; arXiv: math/0405072[[math.QA]] | DOI | MR | Zbl

[35] S. N. M. Ruijsenaars, “First order analytic difference equations and integrable quantum systems”, J. Math. Phys., 38 (1997), 1069–1146 | DOI | MR | Zbl

[36] E. K. Sklyanin, “O nekotorykh algebraicheskikh strukturakh, svyazannykh s uravneniem Yanga–Bakstera”, Funkts. analiz i ego pril., 16:4 (1982), 27–34 | MR | Zbl

[37] E. K. Sklyanin, “O nekotorykh algebraicheskikh strukturakh, svyazannykh s uravneniem Yanga–Bakstera. Predstavleniya kvantovoi algebry”, Funkts. analiz i ego pril., 17:4 (1983), 34–48 | MR | Zbl

[38] V. P. Spiridonov, “Nepreryvnaya biortogonalnost ellipticheskoi gipergeometricheskoi funktsii”, Algebra i analiz, 20:5 (2008), 155–185 ; arXiv: 0801.4137[math.CA] | MR | Zbl

[39] V. P. Spiridonov, “Ob ellipticheskoi beta-funktsii”, UMN, 56:1(337) (2001), 181–182 | DOI | MR | Zbl

[40] V. P. Spiridonov, “Derevo Beili dlya integralov”, TMF, 139:1 (2004), 104–111 ; arXiv: math/0312502[math.CA] | DOI | MR | Zbl

[41] V. P. Spiridonov, “Ocherki teorii ellipticheskikh gipergeometricheskikh funktsii”, Uspekhi matem. nauk, 63:3 (2008), 3–72 ; arXiv: 0805.3135[math.CA] | DOI | MR | Zbl

[42] V. P. Spiridonov, S. O. Warnaar, “Inversions of integral operators and elliptic beta integrals on root systems”, Adv. Math., 207 (2006), 91–132 | DOI | MR | Zbl

[43] A. Y. Volkov, “Noncommutative hypergeometry”, Commun. Math. Phys., 258 (2005), 257–273 ; arXiv: math/0312084[math.QA] | DOI | MR | Zbl

[44] A. Zabrodin, “On the spectral curve of the difference Lame operator”, Int. Math. Research Notices, 11 (1999), 589–614 ; arXiv: math/9812161[math.QA] | DOI | MR | Zbl