@article{ZNSL_2015_433_a7,
author = {S. E. Derkachov and D. I. Chicherin},
title = {Matrix factorization for solutions of the {Yang{\textendash}Baxter} equation},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {156--185},
year = {2015},
volume = {433},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_433_a7/}
}
S. E. Derkachov; D. I. Chicherin. Matrix factorization for solutions of the Yang–Baxter equation. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 23, Tome 433 (2015), pp. 156-185. http://geodesic.mathdoc.fr/item/ZNSL_2015_433_a7/
[1] R. J. Baxter, “Partition function of the eight-vertex lattice model”, Ann. Phys., 70 (1972), 193–228 | DOI | MR | Zbl
[2] V. V. Bazhanov, V. V. Mangazeev, S. M. Sergeev, “Faddeev-Volkov solution of the Yang-Baxter equation and discrete conformal symmetry”, Nucl. Phys. B, 784 (2007), 234 ; arXiv: hep-th/0703041 | DOI | MR | Zbl
[3] V. V. Bazhanov, S. M. Sergeev, “A master solution of the quantum Yang–Baxter equation and classical discrete integrable equations”, ATMP, 16 (2012), 65–95 ; arXiv: 1006.0651[math-ph] | MR | Zbl
[4] V. V. Bazhanov, Yu. G. Stroganov, “Chiral Potts model as a descendant of the six-vertex model”, J. Stat. Phys., 59 (1990), 799–817 | DOI | MR | Zbl
[5] A. G. Bytsko, J. Teschner, “$R$-operator, co-product and Haar-measure for the modular double of $U_q(sl(2,R))$”, Commun. Math. Phys., 240 (2003), 171–196 ; arXiv: math/0208191[math.QA] | DOI | MR | Zbl
[6] A. G. Bytsko, J. Teschner, “Quantization of models with non-compact quantum group symmetry: Modular XXZ magnet and lattice sinh-Gordon model”, J. Phys. A, 39 (2006), 12927 ; arXiv: hep-th/0602093 | DOI | MR | Zbl
[7] D. Chicherin, S. Derkachov, “The $R$-operator for a modular double”, J. Phys. A, 47 (2014), 115203 ; arXiv: 1309.0803[math-ph] | DOI | MR | Zbl
[8] D. Chicherin, S. E. Derkachov, V. P. Spiridonov, From principal series to finite-dimensional solutions of the Yang–Baxter equation, arXiv: 1411.7595[math-ph]
[9] D. Chicherin, S. E. Derkachov, V. P. Spiridonov, New elliptic solutions of the Yang–Baxter equation, arXiv: 1412.3383[math-ph]
[10] S. E. Derkachev, “Factorization of the $R$-matrix. I”, Zap. nauchn. sem. POMI, 335, POMI, SPb., 2006, 134–163 ; arXiv: math/0503396[math.QA] | MR
[11] S. Derkachov, D. Karakhanyan, R. Kirschner, “Yang–Baxter $R$-operators and parameter permutations”, Nucl. Phys. B, 785 (2007), 263 ; arXiv: hep-th/0703076 | DOI | MR | Zbl
[12] S. E. Derkachev, A. N. Manashov, “Obschee reshenie uravneniya Yanga–Bakstera s gruppoi simmetrii $SL(n,C)$”, Algebra i analiz, 21:4 (2009), 1–94 | MR | Zbl
[13] S. E. Derkachev, V. P. Spiridonov, “Uravnenie Yanga–Bakstera, perestanovki parametrov i ellipticheskii beta-integral”, UMN, 68:6(414) (2013), 59–106 ; arXiv: 1205.3520[math-ph] | DOI | MR | Zbl
[14] S. E. Derkachev, V. P. Spiridonov, “Konechnomernye predstavleniya ellipticheskogo modulyarnogo dublya”, TMF (to appear)
[15] L. D. Faddeev, “How the algebraic Bethe ansatz works for integrable models”, Quantum Symmetries/Symetries Qantiques, Proc. Les-Houches summer school, eds. A. Connes, K. Kawedzki, J. Zinn-Justin, North-Holland, 1998, 149–211 ; arXiv: hep-th/9605187 | MR
[16] L. D. Faddeev, “Discrete Heisenberg-Weyl group and modular group”, Lett. Math. Phys., 34 (1995), 249–254 ; arXiv: hep-th/9504111 | DOI | MR | Zbl
[17] L. D. Faddeev, “Modular double of a quantum group”, Conf. Moshé Flato 1999, v. I, Math. Phys. Stud., 21, Kluwer, Dordrecht, 2000, 149–156 ; arXiv: math/9912078[math.QA] | MR | Zbl
[18] L. D. Faddeev, R. M. Kashaev, A. Y. Volkov, “Strongly coupled quantum discrete Liouville theory. 1. Algebraic approach and duality”, Commun. Math. Phys., 219 (2001), 199–219 ; arXiv: hep-th/0006156 | DOI | MR | Zbl
[19] V. O. Tarasov, L. A. Takhtadzhyan, L. D. Faddeev, “Lokalnye gamiltoniany dlya integriruemykh kvantovykh modelei na reshetke”, TMF, 57:2 (1983), 163–181 | MR
[20] A. Yu. Volkov, L. D. Faddeev, “Yang-baksterizatsiya kvantovogo dilogarifma”, Zap. nauchn. sem. POMI, 224, POMI, SPb., 1995, 146–154 | MR | Zbl
[21] L. Hadasz, M. Pawelkiewicz, V. Schomerus, “Self-dual Continuous Series of Representations for $\mathcal U_q(sl(2))$ and $\mathcal U_q(osp(1|2))$”, JHEP, 1410 (2014), 91 ; arXiv: 1305.4596[hep-th] | DOI | MR
[22] M. Jimbo (ed.), Yang-Baxter equation in integrable systems, Adv. Ser. Math. Phys., 10, World Scientific, Singapore, 1990 | DOI | MR | Zbl
[23] S. M. Khoroshkin, V. N. Tolstoy, “Yangian Double”, Lett. Math. Phys., 36 (1996), 373–402 ; arXiv: hep-th/9406194 | DOI | MR | Zbl
[24] S. Khoroshkin, Z. Tsuboi, “The universal $R$-matrix and factorization of the $L$-operators related to the Baxter $Q$-operators”, J. Phys. A, 47 (2014), 192003 ; arXiv: 1401.0474[math-ph] | DOI | MR | Zbl
[25] I. Krichever, A. Zabrodin, “Vacuum curves of elliptic $L$-operators and representations of Sklyanin algebra”, Amer. Math. Soc. Transl. Ser. 2, 191 (1999), 199–221 ; arXiv: solv-int/9801022 | MR | Zbl
[26] P. P. Kulish, E. K. Sklyanin, “O resheniyakh uravneniya Yanga–Bakstera”, Zap. nauchn. sem. LOMI, 95, 1980, 129–160 | MR | Zbl
[27] P. P. Kulish, N. Y. Reshetikhin, E. K. Sklyanin, “Yang–Baxter Equation and Representation Theory. 1”, Lett. Math. Phys., 5 (1981), 393–403 | DOI | MR | Zbl
[28] P. P. Kulish, E. K. Sklyanin, “Quantum spectral transform method. Recent developments”, Lect. Notes Physics, 151, 1982, 61–119 | DOI | MR | Zbl
[29] V. V. Mangazeev, “On the Yang–Baxter equation for the six-vertex model”, Nucl. Phys. B, 882 (2014), 70 ; arXiv: 1401.6494[math-ph] | DOI | MR | Zbl
[30] V. V. Mangazeev, “$Q$-operators in the six-vertex model”, Nucl. Phys. B, 886 (2014), 166 ; arXiv: 1406.0662[math-ph] | DOI | MR
[31] M. Pawelkiewicz, V. Schomerus, P. Suchanek, “The universal Racah–Wigner symbol for $\mathrm U_q(osp(1|2))$”, JHEP, 1404 (2014), 079 ; arXiv: 1307.6866[hep-th] | DOI
[32] E. M. Rains, “$BC_n$-symmetric abelian functions”, Duke Math. J., 135:1 (2006), 99–180 | DOI | MR | Zbl
[33] H. Rosengren, “An elementary approach to $6j$-symbols (classical, quantum, rational, trigonometric, and elliptic)”, Ramanujan J., 13 (2007), 131–166 ; arXiv: math/0312310[math.CA] | DOI | MR | Zbl
[34] H. Rosengren, “Sklyanin invariant integration”, Internat. Math. Res. Notices, 60 (2004), 3207–3232 ; arXiv: math/0405072[[math.QA]] | DOI | MR | Zbl
[35] S. N. M. Ruijsenaars, “First order analytic difference equations and integrable quantum systems”, J. Math. Phys., 38 (1997), 1069–1146 | DOI | MR | Zbl
[36] E. K. Sklyanin, “O nekotorykh algebraicheskikh strukturakh, svyazannykh s uravneniem Yanga–Bakstera”, Funkts. analiz i ego pril., 16:4 (1982), 27–34 | MR | Zbl
[37] E. K. Sklyanin, “O nekotorykh algebraicheskikh strukturakh, svyazannykh s uravneniem Yanga–Bakstera. Predstavleniya kvantovoi algebry”, Funkts. analiz i ego pril., 17:4 (1983), 34–48 | MR | Zbl
[38] V. P. Spiridonov, “Nepreryvnaya biortogonalnost ellipticheskoi gipergeometricheskoi funktsii”, Algebra i analiz, 20:5 (2008), 155–185 ; arXiv: 0801.4137[math.CA] | MR | Zbl
[39] V. P. Spiridonov, “Ob ellipticheskoi beta-funktsii”, UMN, 56:1(337) (2001), 181–182 | DOI | MR | Zbl
[40] V. P. Spiridonov, “Derevo Beili dlya integralov”, TMF, 139:1 (2004), 104–111 ; arXiv: math/0312502[math.CA] | DOI | MR | Zbl
[41] V. P. Spiridonov, “Ocherki teorii ellipticheskikh gipergeometricheskikh funktsii”, Uspekhi matem. nauk, 63:3 (2008), 3–72 ; arXiv: 0805.3135[math.CA] | DOI | MR | Zbl
[42] V. P. Spiridonov, S. O. Warnaar, “Inversions of integral operators and elliptic beta integrals on root systems”, Adv. Math., 207 (2006), 91–132 | DOI | MR | Zbl
[43] A. Y. Volkov, “Noncommutative hypergeometry”, Commun. Math. Phys., 258 (2005), 257–273 ; arXiv: math/0312084[math.QA] | DOI | MR | Zbl
[44] A. Zabrodin, “On the spectral curve of the difference Lame operator”, Int. Math. Research Notices, 11 (1999), 589–614 ; arXiv: math/9812161[math.QA] | DOI | MR | Zbl