Computation of $RS$-pullback transformations for algebraic Painlevé VI solutions
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 23, Tome 433 (2015), pp. 131-155 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Algebraic solutions of the sixth Painlevé equation can be constructed with the help of $RS$-transformations of the hypergeometric equations. Construction of these transformations includes specially ramified rational coverings of the Riemann sphere and corresponding Schlesinger transformations ($S$-transformations). Some algebraic solutions can be constructed from rational coverings alone, without obtaining the corresponding pullbacked isomonodromy \break Fuchsian system, i.e., without $S$ part of the $RS$ transformations. At the same time one and the same covering can be used to pullback different hypergeometric equations, resulting in different algebraic Painlevé VI solutions. In case of high degree coverings construction of $S$ parts of the $RS$-transformations may represent some computational difficulties. This paper presents computations of explicit $RS$-pullback transformations, and derivation of algebraic Painlevé VI solutions from them. As an example, we present computation of all seed solutions for pull-backs of hyperbolic hypergeometric equations.
@article{ZNSL_2015_433_a6,
     author = {R. Vidunas and A. V. Kitaev},
     title = {Computation of $RS$-pullback transformations for algebraic {Painlev\'e~VI} solutions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {131--155},
     year = {2015},
     volume = {433},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_433_a6/}
}
TY  - JOUR
AU  - R. Vidunas
AU  - A. V. Kitaev
TI  - Computation of $RS$-pullback transformations for algebraic Painlevé VI solutions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2015
SP  - 131
EP  - 155
VL  - 433
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2015_433_a6/
LA  - en
ID  - ZNSL_2015_433_a6
ER  - 
%0 Journal Article
%A R. Vidunas
%A A. V. Kitaev
%T Computation of $RS$-pullback transformations for algebraic Painlevé VI solutions
%J Zapiski Nauchnykh Seminarov POMI
%D 2015
%P 131-155
%V 433
%U http://geodesic.mathdoc.fr/item/ZNSL_2015_433_a6/
%G en
%F ZNSL_2015_433_a6
R. Vidunas; A. V. Kitaev. Computation of $RS$-pullback transformations for algebraic Painlevé VI solutions. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 23, Tome 433 (2015), pp. 131-155. http://geodesic.mathdoc.fr/item/ZNSL_2015_433_a6/

[1] F. V. Andreev, A. V. Kitaev, “Some Examples of $RS^2_3(3)$-Transformations of Ranks 5 and 6 as the Higher Order Transformations for the Hypergeometric Function”, Ramanujan J., 7:4 (2003), 455–476 ; ; 2000, 20 pp., arXiv: http://xyz.lanl.govnlin/0012052[nlin.SI] | DOI | MR | Zbl

[2] F. V. Andreev, A. V. Kitaev, “Transformations ${RS}_4^2(3)$ of the Ranks $\leq4$ and Algebraic Solutions of the Sixth Painlevé Equation”, Comm. Math. Phys., 228 (2002), 151–176 ; ; 2001, 26 pp., arXiv: http://xyz.lanl.govnlin/0107074[nlin.SI] | DOI | MR | Zbl

[3] F. Beukers, A. van der Waall, “Lamé equations with algebraic solutions”, J. Diff. Eqs., 197:1 (2004), 1–25 | DOI | MR | Zbl

[4] P. Boalch, “From Klein Solution Painlevé via Fourier, Laplace and Jimbo”, Proc. London Math. Soc. (3), 90 (2005), 167–208 | DOI | MR | Zbl

[5] P. Boalch, “The fifty-two icosahedral solutions to Painlevé VI”, J. Reine Angew. Math., 596 (2006), 183–214 | MR | Zbl

[6] P. Boalch, “Some explicit solutions to the Riemann-Hilbert problem”, Differential Equations and Quantum Groups, IRMA Lectures in Mathematics and Theoretical Physics, 9, 2006, 85–112 | MR

[7] Ch. F. Doran, “Algebraic and Geometric Isomonodromic Deformations”, J. Dif. Geom., 59 (2001), 33–85 | MR | Zbl

[8] B. Dubrovin, M. Mazzocco, “Monodromy of Certain Painlevé-VI Transcendents and Reflection Groups”, Invent. Math., 141 (2000), 55–147 | DOI | MR | Zbl

[9] H. Flashka, A. C. Newell, “Monodromy and spectrum preserving deformations. I”, Commun. Math. Phys., 76 (1980), 67–116 | MR

[10] R. Fuchs, “Über lineare homogene Differentialgleichungen zweiter Ordnung mit drei im Endlichen gelegenen wesentlich singulären Stellen”, Math. Ann., 70 (1911), 525–549 | DOI | MR | Zbl

[11] M. Jimbo, T. Miwa, “Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II”, Physica D, 2 (1981), 407–448 | DOI | MR | Zbl

[12] A. V. Kitaev, “Special Functions of the Isomonodromy Type, Rational Transformations of Spectral Parameter, and Algebraic Solutions of the Sixth Painlevé Equation”, Algebra Analiz, 14:3 (2002), 121–139 | MR | Zbl

[13] A. V. Kitaev, “Grothendieck's Dessins d'Enfants, Their Deformations and Algebraic Solutions of the Sixth Painlevé and Gauss Hypergeometric Equations”, Algebra Analiz, 17:1 (2005), 224–275 | MR | Zbl

[14] A. V. Kitaev, “Remarks Towards Classification of $RS_4^2(3)$-Transformations and Algebraic Solutions of the Sixth Painlevé Equation”, Theorie asymptotiques et equations de Painleve (Angers, June 2004), Séminaires et Congrés, 14, eds. M. Loday, E. Delabaere, 2006, 199–227 | MR | Zbl

[15] F. Klein, Vorlesungen über das Ikosaedar, B. G. Teubner, Leipzig, 1884

[16] O. Lisovyy, Y. Tykhyy, “Algebraic solutions of the sixth Painlevé equation”, J. Geom. Phys., 85 (2014), 124–263 | DOI | MR

[17] R. Litcanu, “Lamé operators with finite monodromy – a combinatorial approach”, J. Dif. Eqs., 207 (2004), 93–116 | DOI | MR | Zbl

[18] Y. Ohyama, S. Okumura, “R. Fuchs problem of the Painlevé Equations from the first to the fifth”, Algebraic and Geometric Aspects of Integrable Systems and Random Matrices, Contemporary Mathematics, 593, ed. A. Dzhamay, 2013, 163–178 | DOI | MR | Zbl

[19] K. Okamoto, “Studies on the Painlevé Equations. I. Sixth Painlevé Equation $P_{VI}$”, Annali Mat. Pura Appl., 146 (1987), 337–381 | DOI | MR | Zbl

[20] A. Ramani, B. Grammaticos, T. Tamizhmani, “Quadratic relations in continuous and discrete Painlevé Equations”, J. Phys. A: Math. Gen., 33 (2000), 3033–3044 | DOI | MR | Zbl

[21] R. Vidunas, A. V. Kitaev, “Quadratic Transformations of the Sixth Painlevé Equation”, Mathematische Nachrichten, 280 (2007), 1834–1855 | DOI | MR | Zbl

[22] R. Vidunas, A. V. Kitaev, “Computation of highly ramified coverings”, Mathematics of Computation, 78 (2009), 2371–2395 | DOI | MR | Zbl

[23] R. Vidunas, A. V. Kitaev, Schlesinger transformations for algebraic Painlevé VI solutions, arXiv: 0810.2766

[24] R. Vidunas, “Algebraic Transformations of Gauss Hypergeometric Functions”, Funkcialaj Ekvacioj, 52 (2009), 139–180 | DOI | MR | Zbl

[25] R. Vidunas, “Transformations of some Gauss hypergeometric functions”, J. Comp. Appl. Math., 178 (2005), 473–487 | DOI | MR | Zbl

[26] A. Zvonkin, “Megamaps: Construction and Examples”, Discrete Mathematics and Theoretical Computer Science Proceedings AA (DM-CCG), 2001, 329–340 | MR | Zbl