The discrete spectrum of Jacobi matrix related to recurrence relations with periodic coefficients
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 23, Tome 433 (2015), pp. 111-130 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this note we investigate the discrete spectrum of Jacobi matrix corresponding to polynomials defined by recurrence relations with periodic coefficients. As examples we consider a) the case when period $N$ of coefficients of recurrence relations equals three (as a particular case we consider “parametric” Chebyshev polynomials introduced by authors early); b) the elementary $N$-symmetrical Chebyshev polynomials ($N=3,4,5$), that was introduced by authors in the study of the “composite model of generalized oscillator”.
@article{ZNSL_2015_433_a5,
     author = {V. V. Borzov and E. V. Damaskinsky},
     title = {The discrete spectrum of {Jacobi} matrix related to recurrence relations with periodic coefficients},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {111--130},
     year = {2015},
     volume = {433},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_433_a5/}
}
TY  - JOUR
AU  - V. V. Borzov
AU  - E. V. Damaskinsky
TI  - The discrete spectrum of Jacobi matrix related to recurrence relations with periodic coefficients
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2015
SP  - 111
EP  - 130
VL  - 433
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2015_433_a5/
LA  - ru
ID  - ZNSL_2015_433_a5
ER  - 
%0 Journal Article
%A V. V. Borzov
%A E. V. Damaskinsky
%T The discrete spectrum of Jacobi matrix related to recurrence relations with periodic coefficients
%J Zapiski Nauchnykh Seminarov POMI
%D 2015
%P 111-130
%V 433
%U http://geodesic.mathdoc.fr/item/ZNSL_2015_433_a5/
%G ru
%F ZNSL_2015_433_a5
V. V. Borzov; E. V. Damaskinsky. The discrete spectrum of Jacobi matrix related to recurrence relations with periodic coefficients. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 23, Tome 433 (2015), pp. 111-130. http://geodesic.mathdoc.fr/item/ZNSL_2015_433_a5/

[1] M. Kac, P. Van Moerbeke, “On some periodic Toda lattices”, Proc. Nat. Acad. Sci. U.S.A., 72 (1975), 1627–1629 | DOI | MR | Zbl

[2] Aptekarev A. I., “Asimptoticheskie svoistva mnogochlenov, ortogonalnykh na sisteme konturov, i periodicheskie dvizheniya tsepochek Toda”, Mat. Sb., 125(167):2(10) (1984), 231–258 | MR | Zbl

[3] W. Van Assche, “Christoffel functions and Tura'n determinants on several intervals”, J. Comput. and Appl. Math., 48:1–2 (1993), 207–223 | MR | Zbl

[4] D. Barrios, G. Lopes, E. Torrano, “Polinomy, porozhdennye trekhchlennym rekurrentnym sootnosheniem s asimptoticheski periodicheskimi kompleksnymi koeffitsientami”, Mat. Sb., 186:5 (1995), 3–34 | MR | Zbl

[5] J. Bazargan, I. Egorova, “Jacobi operator with step-like asymptotically periodic coefficients”, Mat. Fiz. Anal. Geom., 10:3 (2003), 425–442 | MR | Zbl

[6] J. Geronimo, W. Van Assche, “Orthogonal polynomials with asymptotically periodic recurrence coefficients”, J. Approx. Theory, 46 (1986), 251–283 | DOI | MR | Zbl

[7] J. Gilewicz, E. Leopold, “Zeros of polynomials and recurrence relations with periodic coefficients”, J. Comput. Appl. Math., 107:2 (1999), 241–255 | DOI | MR | Zbl

[8] C. C. Grosjean, “The measure induced by orthogonal polynomials satisfying a recursion formula with either constant or periodic coefficients. Part I: Constant coefficients”, Med. Konink. Acad. Wetensch. Belgie, 48:3 (1986), 39–60 | MR

[9] P. Van Moerbeke, “The spectrum of Jacobi matrices”, Invent. Math., 37:1 (1976), 45–81 | DOI | MR | Zbl

[10] F. Peherstorfer, “On Bernstein–Szego orthogonal polynomials on several intervals. II. Orthogonal polynomials with periodic recurrence coefficients”, J. Approx. Theory, 64:2 (1991), 123–161 | DOI | MR | Zbl

[11] F. Peherstorfer, R. Steinbauer, “Orthogonal polynomials on arcs of the unit circle. II. Orthogonal polynomials with periodic reflection coefficients”, J. Approx. Theory, 87:1 (1996), 60–102 | DOI | MR | Zbl

[12] F. Peherstorfer, R. Steinbauer, “Asymptotic Behaviour of Orthogonal Polynomials on the Unit Circle with Asymptotically Periodic Reflection Coefficients”, J. Approx. Theory, 88:3 (1997), 316–353 | DOI | MR | Zbl

[13] A. Almendral Va'zquez, “The Spectrum of a Periodic Complex Jacobi Matrix Revisited”, J. Approx. Theory, 105:2 (2000), 344–351 | DOI | MR | Zbl

[14] B. Beckermann, J. Gilewicz, E. Leopold, “Recurrence relation with periodic coefficients and Chebyshev polynomials”, Applicationes Mathematicae, 23 (1995), 319–323 | MR | Zbl

[15] V. V. Borzov, E. V. Damaskinskii, “$N$-simmetrichnye polinomy Chebysheva v sostavnoi modeli obobschennogo ostsillyatora”, TMF, 169:2 (2011), 229–240 | DOI | MR

[16] V. V. Borzov, E. V. Damaskinskii, “Sostavnaya model obobschennogo ostsillyatora. I”, Zap. nauchn. semin. POMI, 374, 2010, 58–81 | MR | Zbl

[17] V. V. Borzov, E. V. Damaskinsky, “Connection between representations of nonstandard and standard Chebyshev oscillators”, Day on Diffraction, 2010, 28–34

[18] V. V. Borzov, E. V. Damaskinsky, “The differential equation for generalized parametric Chebyshev polynomials”, Day on Diffraction, 2012

[19] V. V. Borzov, E. V. Damaskinskii, “Differentsialnye uravneniya dlya prosteishikh 3-simmetrichnykh polinomov Chebysheva”, Zap. Nauchn. Semin. POMI, 398, 2012, 64–86 | MR