Extensions of the quadratic form of the transverse Laplace operator
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 23, Tome 433 (2015), pp. 78-110 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We review the quadratic form of the Laplace operator in spehrical coordinates which acts on the transverse components of vector functions on the $3$-dimensional space. Operators, acting on the parametrizing functions of one of the transverse components with angular momentum 1 and 2, appear to be fourth order symmetric differential operators with deficiency indices (1,1). We develop self-adjoint extensions of these operators and propose correspondent extensions for the initial quadratic form. Eigenfuctions of the extensions in question represent a stable soliton-like solutions of the physical system with the quadratic form being a potential energy.
@article{ZNSL_2015_433_a4,
     author = {T. A. Bolokhov},
     title = {Extensions of the quadratic form of the transverse {Laplace} operator},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {78--110},
     year = {2015},
     volume = {433},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_433_a4/}
}
TY  - JOUR
AU  - T. A. Bolokhov
TI  - Extensions of the quadratic form of the transverse Laplace operator
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2015
SP  - 78
EP  - 110
VL  - 433
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2015_433_a4/
LA  - ru
ID  - ZNSL_2015_433_a4
ER  - 
%0 Journal Article
%A T. A. Bolokhov
%T Extensions of the quadratic form of the transverse Laplace operator
%J Zapiski Nauchnykh Seminarov POMI
%D 2015
%P 78-110
%V 433
%U http://geodesic.mathdoc.fr/item/ZNSL_2015_433_a4/
%G ru
%F ZNSL_2015_433_a4
T. A. Bolokhov. Extensions of the quadratic form of the transverse Laplace operator. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 23, Tome 433 (2015), pp. 78-110. http://geodesic.mathdoc.fr/item/ZNSL_2015_433_a4/

[1] K. Friedrichs, “Spektraltheorie halbbeschränkter Operatoren”, Math. Ann., 109 (1934), 465–487 ; M. Stone, Linear Transformations in Hilbert spaces and their Applications in Analysis, Amer. Math. Soc. Colloquim Publication, 15, Providence, R.I., 1932 | DOI | MR | Zbl | MR | Zbl

[2] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, v. 2, Garmonicheskii analiz i samosopryazhennost, Mir, M., 1978 | MR

[3] M. G. Krein, “The theory of self-adjoint extensions of semi-bounded Hermitian transformations and its applications. I”, Rec. Math. (Mat. Sbornik) N.S., 20(62):3 (1947), 431–495 | MR | Zbl

[4] F. A. Berezin, L. D. Faddeev, “Zamechanie ob uravnenii Shredingera s singulyarnym potentsialom”, Doklady AN SSSR, 137:5 (1961), 1011–1014 | MR | Zbl

[5] S. Albeverio, P. Kurasov, Singular Perturbation of Differential Operators. Solvable Schrödinger type Operators, Cambridge University Press, 2000 | MR

[6] B. Shutts, Geometricheskie metody matematicheskoi fiziki, Mir, M., 1984; E. L. Hill, “The Theory of Vector Spherical Harmonics”, Am. J. Phys., 22 (1954), 211 | DOI | MR | Zbl

[7] R. D. Rikhtmaier, Printsipy sovremennoi matematicheskoi fiziki, v. 1, Mir, M., 1982 | MR