@article{ZNSL_2015_433_a4,
author = {T. A. Bolokhov},
title = {Extensions of the quadratic form of the transverse {Laplace} operator},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {78--110},
year = {2015},
volume = {433},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_433_a4/}
}
T. A. Bolokhov. Extensions of the quadratic form of the transverse Laplace operator. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 23, Tome 433 (2015), pp. 78-110. http://geodesic.mathdoc.fr/item/ZNSL_2015_433_a4/
[1] K. Friedrichs, “Spektraltheorie halbbeschränkter Operatoren”, Math. Ann., 109 (1934), 465–487 ; M. Stone, Linear Transformations in Hilbert spaces and their Applications in Analysis, Amer. Math. Soc. Colloquim Publication, 15, Providence, R.I., 1932 | DOI | MR | Zbl | MR | Zbl
[2] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, v. 2, Garmonicheskii analiz i samosopryazhennost, Mir, M., 1978 | MR
[3] M. G. Krein, “The theory of self-adjoint extensions of semi-bounded Hermitian transformations and its applications. I”, Rec. Math. (Mat. Sbornik) N.S., 20(62):3 (1947), 431–495 | MR | Zbl
[4] F. A. Berezin, L. D. Faddeev, “Zamechanie ob uravnenii Shredingera s singulyarnym potentsialom”, Doklady AN SSSR, 137:5 (1961), 1011–1014 | MR | Zbl
[5] S. Albeverio, P. Kurasov, Singular Perturbation of Differential Operators. Solvable Schrödinger type Operators, Cambridge University Press, 2000 | MR
[6] B. Shutts, Geometricheskie metody matematicheskoi fiziki, Mir, M., 1984; E. L. Hill, “The Theory of Vector Spherical Harmonics”, Am. J. Phys., 22 (1954), 211 | DOI | MR | Zbl
[7] R. D. Rikhtmaier, Printsipy sovremennoi matematicheskoi fiziki, v. 1, Mir, M., 1982 | MR