Extensions of the quadratic form of the transverse Laplace operator
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 23, Tome 433 (2015), pp. 78-110

Voir la notice de l'article provenant de la source Math-Net.Ru

We review the quadratic form of the Laplace operator in spehrical coordinates which acts on the transverse components of vector functions on the $3$-dimensional space. Operators, acting on the parametrizing functions of one of the transverse components with angular momentum 1 and 2, appear to be fourth order symmetric differential operators with deficiency indices (1,1). We develop self-adjoint extensions of these operators and propose correspondent extensions for the initial quadratic form. Eigenfuctions of the extensions in question represent a stable soliton-like solutions of the physical system with the quadratic form being a potential energy.
@article{ZNSL_2015_433_a4,
     author = {T. A. Bolokhov},
     title = {Extensions of the quadratic form of the transverse {Laplace} operator},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {78--110},
     publisher = {mathdoc},
     volume = {433},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_433_a4/}
}
TY  - JOUR
AU  - T. A. Bolokhov
TI  - Extensions of the quadratic form of the transverse Laplace operator
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2015
SP  - 78
EP  - 110
VL  - 433
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2015_433_a4/
LA  - ru
ID  - ZNSL_2015_433_a4
ER  - 
%0 Journal Article
%A T. A. Bolokhov
%T Extensions of the quadratic form of the transverse Laplace operator
%J Zapiski Nauchnykh Seminarov POMI
%D 2015
%P 78-110
%V 433
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2015_433_a4/
%G ru
%F ZNSL_2015_433_a4
T. A. Bolokhov. Extensions of the quadratic form of the transverse Laplace operator. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 23, Tome 433 (2015), pp. 78-110. http://geodesic.mathdoc.fr/item/ZNSL_2015_433_a4/