Time-dependent correlation functions for a bimodal Bose–Hubbard model
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 23, Tome 433 (2015), pp. 65-77
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The bimodal Bose–Hubbard model is studied. The application of the Quantum Inverse Method allows to calculate the time-dependent correlation functions of the model. Form-factors of the bosonic creation and annihilation operators in the wells are expressed in the determinantal form.
@article{ZNSL_2015_433_a3,
     author = {N. M. Bogoliubov},
     title = {Time-dependent correlation functions for a~bimodal {Bose{\textendash}Hubbard} model},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {65--77},
     year = {2015},
     volume = {433},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_433_a3/}
}
TY  - JOUR
AU  - N. M. Bogoliubov
TI  - Time-dependent correlation functions for a bimodal Bose–Hubbard model
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2015
SP  - 65
EP  - 77
VL  - 433
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2015_433_a3/
LA  - ru
ID  - ZNSL_2015_433_a3
ER  - 
%0 Journal Article
%A N. M. Bogoliubov
%T Time-dependent correlation functions for a bimodal Bose–Hubbard model
%J Zapiski Nauchnykh Seminarov POMI
%D 2015
%P 65-77
%V 433
%U http://geodesic.mathdoc.fr/item/ZNSL_2015_433_a3/
%G ru
%F ZNSL_2015_433_a3
N. M. Bogoliubov. Time-dependent correlation functions for a bimodal Bose–Hubbard model. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 23, Tome 433 (2015), pp. 65-77. http://geodesic.mathdoc.fr/item/ZNSL_2015_433_a3/

[1] G. Milburn, J. Corney, E. Wright, D. Walls, “Quantum dynamics of an atomic Bose–Einstein condensate in a double-well potential”, Phys. Rev. A, 55 (1997), 4318 | DOI

[2] D. Witthaut, F. Trimborn, S. Wimberger, “Dissipation induced coherence of a two-mode Bose–Einstein condensate”, Phys. Rev. Lett., 101 (2008), 200402 | DOI

[3] E. Boukobza, M. Chuchem, D. Cohen, A. Vardi, “Phase-diffusion dynamics in weakly coupled Bose-Einstein condensates”, Phys. Rev. Lett., 102 (2009), 180403 | DOI

[4] T. Pudlik, H. Hennig, D. Witthaut, D. Campbell, “Dynamics of entanglement in a dissipative Bose–Hubbard dimer”, Phys. Rev. A, 88 (2013), 063606 | DOI

[5] F. Trimborn, D. Witthaut, V. Kegel, H. J. Korsch, “Nonlinear Landau-Zener tunneling in quantum phase space”, New J. Phys., 12 (2010), 053010 | DOI

[6] I. Tikhonenkov, M. G. Moore, A. Vardi, “Robust sub-shot-noise measurement via Rabi-Josephson oscillations in bimodal Bose–Einstein condensates”, Phys. Rev. A, 83 (2011), 063628 | DOI

[7] M. Chuchem, K. Smith-Mannschott, M. Hiller, T. Kottos, A. Vardi, D. Cohen, “Quantum dynamics in the bosonic Josephson junction”, Phys. Rev. A, 82 (2010), 053617 | DOI

[8] V. Giovannetti, S. Lloyd, L. Maccone, “Quantum-Enhanced Measurements: Beating the Standard Quantum Limit”, Science, 306 (2004), 1330 | DOI

[9] D. Jaksch, H.-J. Briegel, J. Cirac, C. Gardiner, P. Zoller, “Entanglement of Atoms via Cold Controlled Collisions”, Phys. Rev. Lett., 82 (1999), 1975 | DOI

[10] L. D. Faddeev, “Quantum completely integrable models of field theory”, Sov. Sci. Rev. Math. C, 1 (1980), 107–160; 40 Years in Mathematical Physics, World Sci. Ser. 20th Century Math., 2, World Sci., Singapore, 1995, 187–235 | DOI | MR

[11] P. P. Kulish, E. K. Sklyanin, “Quantum spectral transform method. Recent developments”, Lecture Notes Phys., 151, 1982, 61–119 | DOI | MR | Zbl

[12] V. Z. Enol'skii, V. B. Kuznetsov, M. Salerno, “On the quantum inverse scattering method for the DST dimer”, Phys. D, 68 (1993), 138 | DOI | MR | Zbl

[13] J. Links, K. Hibberd, “Bethe Ansatz Solutions of the Bose–Hubbard Dimer”, SIGMA, 2 (2006), Paper 095 | DOI | MR | Zbl

[14] R. Orús, S. Dusuel, J. Vidal, “Equivalence of Critical Scaling Laws for Many-Body Entanglement in the Lipkin–Meshkov–Glick Model”, Phys. Rev. Lett., 101 (2008), 025701 | DOI

[15] N. M. Bogoliubov, R. K. Bullough, J. Timonen, “Exact solution of generalised Tavis–Cummings models in quantum optics”, J. Phys. A, 29 (1996), 6305 | DOI | MR | Zbl

[16] N. M. Bogolyubov, P. P. Kulish, “Tochno-reshaemye modeli kvantovoi nelineinoi optiki”, Zap. nauchn. sem. POMI, 398, 2012, 26 | MR

[17] N. M. Bogolyubov, A. G. Izergin, V. E. Korepin, Korrelyatsionnye funktsii integriruemykh sistem i kvantovyi metod obratnoi zadachi, Nauka, Moskva, 1992 | MR

[18] V. E. Korepin, N. M. Bogoliubov, A. G. Izergin, Quantum Inverse Scattering Method and Correlation Functions, Cambridge University Press, Cambridge, 1993 | MR | Zbl

[19] I. G. Macdonald, Symmetric Functions and Hall Polynomials, Oxford University Press, Oxford, 1995 | MR | Zbl

[20] N. A. Slavnov, “Vychislenie skalyarnykh proizvedenii volnovykh funktsii i formfaktorov v ramkakh algebraicheskogo anzatsa Bete”, Teor. Matem. Fiz., 79:2 (1989), 232 | MR

[21] N. Kitanine, J. M. Maillet, V. Terras, “Form factors of the XXZ Heisenberg spin-1/2 finite chain”, Nucl. Phys. B, 516 (1999), 647 | DOI | MR

[22] V. E. Korepin, “Calculation of norms of Bethe wave functions”, Comm. Math. Phys., 86 (1982), 391 | DOI | MR | Zbl

[23] M. Hillery, M. Zubairy, “Entanglement Conditions for Two-Mode States”, Phys. Rev. Lett., 96 (2006), 050503 | DOI | MR

[24] Q. He, M. Reid, T. Vaughan, C. Gross, M. Oberthaler, P. Drummond, “Einstein–Podolsky–Rosen Entanglement Strategies in Two-Well Bose–Einstein Condensates”, Phys. Rev. Lett., 106 (2011), 120405 | DOI