Young tableaux and stratification of space of complex square matrices
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 23, Tome 433 (2015), pp. 41-64 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A stratification of the manifold of all square matrices is considered. One equivalence class consists of the matrices with the same sets of non-vanishing values $\mathrm{rank}(A-\lambda_i\mathrm I)^j$. The stratification is consistent with a fibration on the submanifolds of matrices similar to each other, i.e. with the adjoint orbits fibration. Internal structures of the matrices from one equivalence class are very similar, among other factors their (co)adjoint orbits are canonically birationally symplectomorphic. A Young tableaux technic developed in the article describes this stratification and the fibration of the strata on the (co)adjoint orbits.
@article{ZNSL_2015_433_a2,
     author = {M. V. Babich},
     title = {Young tableaux and stratification of space of complex square matrices},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {41--64},
     year = {2015},
     volume = {433},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_433_a2/}
}
TY  - JOUR
AU  - M. V. Babich
TI  - Young tableaux and stratification of space of complex square matrices
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2015
SP  - 41
EP  - 64
VL  - 433
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2015_433_a2/
LA  - ru
ID  - ZNSL_2015_433_a2
ER  - 
%0 Journal Article
%A M. V. Babich
%T Young tableaux and stratification of space of complex square matrices
%J Zapiski Nauchnykh Seminarov POMI
%D 2015
%P 41-64
%V 433
%U http://geodesic.mathdoc.fr/item/ZNSL_2015_433_a2/
%G ru
%F ZNSL_2015_433_a2
M. V. Babich. Young tableaux and stratification of space of complex square matrices. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 23, Tome 433 (2015), pp. 41-64. http://geodesic.mathdoc.fr/item/ZNSL_2015_433_a2/

[1] I. M. Gelfand, M. I. Naimark, Unitarnye predstavleniya klassicheskikh grupp, Trudy matematicheskogo instituta im. V. A. Steklova, 36, 1950, 288 pp. | MR | Zbl

[2] S. E. Derkachov, A. N. Manashov, “$R$-matrix and Baxter $Q$-operators for the noncompact $\mathrm{SL}(N;\mathbb C)$ invariant spin chain”, SIGMA, 2 (2006), Paper 084, 20 pp. ; arXiv: nlin/0612003[nlin.SI] | DOI | MR | Zbl

[3] M. V. Babich, S. E. Derkachev, “O ratsionalnoi simplekticheskoi parametrizatsii koprisoedinennoi orbity $\mathrm{GL}(N,C)$, diagonalizuemyi sluchai”, Algebra i analiz, 22:3 (2010), 16–31 | MR | Zbl

[4] M. V. Babich, Rational version of Archimedes symplectomorphysm and birational Darboux coordinates on coadjoint orbit of $\mathrm{GL}(N,C)$, Preprint MPIM2010-59, MPIM, Bonn, 2010, 36 pp.

[5] U. Fulton, Tablitsy Yunga i ikh prilozheniya k teorii predstavlenii i geometrii, MTsNMO, Moskva, 2006, 328 pp.