@article{ZNSL_2015_433_a2,
author = {M. V. Babich},
title = {Young tableaux and stratification of space of complex square matrices},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {41--64},
year = {2015},
volume = {433},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_433_a2/}
}
M. V. Babich. Young tableaux and stratification of space of complex square matrices. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 23, Tome 433 (2015), pp. 41-64. http://geodesic.mathdoc.fr/item/ZNSL_2015_433_a2/
[1] I. M. Gelfand, M. I. Naimark, Unitarnye predstavleniya klassicheskikh grupp, Trudy matematicheskogo instituta im. V. A. Steklova, 36, 1950, 288 pp. | MR | Zbl
[2] S. E. Derkachov, A. N. Manashov, “$R$-matrix and Baxter $Q$-operators for the noncompact $\mathrm{SL}(N;\mathbb C)$ invariant spin chain”, SIGMA, 2 (2006), Paper 084, 20 pp. ; arXiv: nlin/0612003[nlin.SI] | DOI | MR | Zbl
[3] M. V. Babich, S. E. Derkachev, “O ratsionalnoi simplekticheskoi parametrizatsii koprisoedinennoi orbity $\mathrm{GL}(N,C)$, diagonalizuemyi sluchai”, Algebra i analiz, 22:3 (2010), 16–31 | MR | Zbl
[4] M. V. Babich, Rational version of Archimedes symplectomorphysm and birational Darboux coordinates on coadjoint orbit of $\mathrm{GL}(N,C)$, Preprint MPIM2010-59, MPIM, Bonn, 2010, 36 pp.
[5] U. Fulton, Tablitsy Yunga i ikh prilozheniya k teorii predstavlenii i geometrii, MTsNMO, Moskva, 2006, 328 pp.