@article{ZNSL_2015_433_a12,
author = {M. A. Sokolov},
title = {Generating functions of {Chebyshev} polynomials in three variables},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {246--259},
year = {2015},
volume = {433},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_433_a12/}
}
M. A. Sokolov. Generating functions of Chebyshev polynomials in three variables. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 23, Tome 433 (2015), pp. 246-259. http://geodesic.mathdoc.fr/item/ZNSL_2015_433_a12/
[1] T. N. Koornwinder, “Orthogonal polynomials in two variables which are eigenfunctions of two algebraically independent partial differential operators. I”, Nederl. Akad. Wetensch. Proc. Ser. A, 77{=Indag. Math.,} 36 (1974), 48–58 | DOI | MR | Zbl
[2] G. J. Heckman, “Root systems and hypergeometric functions. II”, Comp. Math., 64 (1987), 353–73 | MR
[3] M. E. Hoffman, W. D. Withers, “Generalized Chebyshev polynomials associated with affine Weyl groups”, Trans. Am. Math. Soc., 308 (1988), 91–104 | DOI | MR | Zbl
[4] R. J. Beerends, “Chebyshev polynomials in several variables and the radial part Laplace–Beltrami operator”, Trans. Am. Math. Soc., 328 (1991), 770–814 | DOI | MR
[5] A. Klimyk, J. Patera, “Orbit functions”, SIGMA, 2 (2006), 006 | DOI | MR | Zbl
[6] V. D. Lyakhovsky, Ph. V. Uvarov, “Multivariate Chebyshev polynomials”, J. Phys. A: Math. Theor., 46 (2013), 125201 | DOI | MR | Zbl
[7] B. N. Ryland, H. Z. Munthe-Kaas, “On multivariate Chebyshev polynomials and spectral approximations on triangles”, Spectral and High Order Methods for Partial Differential Equations, Lecture Notes in Computer Science and Engineering, 76, Springer, Berlin, 2011, 19–41 | DOI | MR | Zbl
[8] B. Shapiro, M. Shapiro, “On Eigenvalues of Rectangular Matrices”, Tr. MIAN, 267 (2009), 258–265 | MR | Zbl
[9] P. P. Kulish, V. D. Lyakhovskii, O. V. Postnova, “Funktsiya kratnostei dlya tenzornykh stepenei modulei algebry $A_n$”, TMF, 171:2 (2012), 283–293 | DOI | MR | Zbl
[10] P. P. Kulish, V. D. Lyakhovsky, O. V. Postnova, “Tensor power decomposition. $B_n$-case”, Journal of Physics: Conference Series, 343 (2012), 012095 | DOI
[11] P. P. Kulish, V. D. Lyakhovsky, O. V. Postnova, “Tensor powers for non-simply laced Lie algebras $B_2$-case”, Journal of Physics: Conference Series, 346 (2012), 012012 | DOI
[12] V. D. Lyakhovsky, “Multivariate Chebyshev polynomials in terms of singular elements”, Theoretical and Mathematical Physics, 175:3 (2013), 797–805 | DOI | MR | Zbl
[13] V. V. Borzov, E. V. Damaskinsky, “Chebyshev–Koornwinder oscillator”, Theoretical and Mathematical Physics, 175:3 (2013), 765–770 | DOI | MR | Zbl
[14] V. V. Borzov, E. V. Damaskinsky, “The algebra of two dimensional generalized Chebyshev–Koornwinder oscillator”, Journal of Mathematical Physics, 55 (2014), 103505 | DOI | MR | Zbl
[15] G. Von Gehlen, S. Roan, “The superintegrable chiral Potts quantum chain and generalized Chebyshev polynomials”, Integrable Structures of Exactly Solvable Two-Dimensional Models of Quantum Field Theory, NATO Science Series, 35, eds. S. Pakuliak, G. Von Gehlen, Springer, Berlin, 2001, 155–172 | MR
[16] G. Von Gehlen, “Onsager's algebra and partially orthogonal polynomials”, Int. J. Mod. Phys. B, 16 (2002), 2129–2136 | DOI | MR | Zbl
[17] P. K. Suetin, Klassicheskie ortogonalnye mnogochleny, Nauka, M., 1979 | MR
[18] N. Burbaki, Gruppy i algebry Li, Gl. IV–VI, Mir, M., 1972 | MR
[19] Ken B. Dunn, R. Lidl, “Generalizations of the classical Chebyshev polynomials to polynomials in two variables”, Czech. Math. J., 32 (1982), 516–528 | MR | Zbl
[20] E. V. Damaskinskii, P. P. Kulish, M. A. Sokolov, O vychislenii proizvodyaschikh funktsii obobschennykh polinomov Chebysheva neskolkikh peremennykh, Preprint 13/2014, POMI
[21] SUN JiaChang, “A new class of three-variable orthogonal polynomials and their recurrences relations”, Science in China, Series A: Mathematics, 51, Jun. (2008), 1071–1092 | DOI | MR | Zbl