Generating functions of Chebyshev polynomials in three variables
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 23, Tome 433 (2015), pp. 246-259 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this paper generating functions of three-variable Chebyshev polynomials (of the first, as well as of the second type) associated with the root system of $A_3$ Lie algebra are obtained.
@article{ZNSL_2015_433_a12,
     author = {M. A. Sokolov},
     title = {Generating functions of {Chebyshev} polynomials in three variables},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {246--259},
     year = {2015},
     volume = {433},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_433_a12/}
}
TY  - JOUR
AU  - M. A. Sokolov
TI  - Generating functions of Chebyshev polynomials in three variables
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2015
SP  - 246
EP  - 259
VL  - 433
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2015_433_a12/
LA  - ru
ID  - ZNSL_2015_433_a12
ER  - 
%0 Journal Article
%A M. A. Sokolov
%T Generating functions of Chebyshev polynomials in three variables
%J Zapiski Nauchnykh Seminarov POMI
%D 2015
%P 246-259
%V 433
%U http://geodesic.mathdoc.fr/item/ZNSL_2015_433_a12/
%G ru
%F ZNSL_2015_433_a12
M. A. Sokolov. Generating functions of Chebyshev polynomials in three variables. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 23, Tome 433 (2015), pp. 246-259. http://geodesic.mathdoc.fr/item/ZNSL_2015_433_a12/

[1] T. N. Koornwinder, “Orthogonal polynomials in two variables which are eigenfunctions of two algebraically independent partial differential operators. I”, Nederl. Akad. Wetensch. Proc. Ser. A, 77{=Indag. Math.,} 36 (1974), 48–58 | DOI | MR | Zbl

[2] G. J. Heckman, “Root systems and hypergeometric functions. II”, Comp. Math., 64 (1987), 353–73 | MR

[3] M. E. Hoffman, W. D. Withers, “Generalized Chebyshev polynomials associated with affine Weyl groups”, Trans. Am. Math. Soc., 308 (1988), 91–104 | DOI | MR | Zbl

[4] R. J. Beerends, “Chebyshev polynomials in several variables and the radial part Laplace–Beltrami operator”, Trans. Am. Math. Soc., 328 (1991), 770–814 | DOI | MR

[5] A. Klimyk, J. Patera, “Orbit functions”, SIGMA, 2 (2006), 006 | DOI | MR | Zbl

[6] V. D. Lyakhovsky, Ph. V. Uvarov, “Multivariate Chebyshev polynomials”, J. Phys. A: Math. Theor., 46 (2013), 125201 | DOI | MR | Zbl

[7] B. N. Ryland, H. Z. Munthe-Kaas, “On multivariate Chebyshev polynomials and spectral approximations on triangles”, Spectral and High Order Methods for Partial Differential Equations, Lecture Notes in Computer Science and Engineering, 76, Springer, Berlin, 2011, 19–41 | DOI | MR | Zbl

[8] B. Shapiro, M. Shapiro, “On Eigenvalues of Rectangular Matrices”, Tr. MIAN, 267 (2009), 258–265 | MR | Zbl

[9] P. P. Kulish, V. D. Lyakhovskii, O. V. Postnova, “Funktsiya kratnostei dlya tenzornykh stepenei modulei algebry $A_n$”, TMF, 171:2 (2012), 283–293 | DOI | MR | Zbl

[10] P. P. Kulish, V. D. Lyakhovsky, O. V. Postnova, “Tensor power decomposition. $B_n$-case”, Journal of Physics: Conference Series, 343 (2012), 012095 | DOI

[11] P. P. Kulish, V. D. Lyakhovsky, O. V. Postnova, “Tensor powers for non-simply laced Lie algebras $B_2$-case”, Journal of Physics: Conference Series, 346 (2012), 012012 | DOI

[12] V. D. Lyakhovsky, “Multivariate Chebyshev polynomials in terms of singular elements”, Theoretical and Mathematical Physics, 175:3 (2013), 797–805 | DOI | MR | Zbl

[13] V. V. Borzov, E. V. Damaskinsky, “Chebyshev–Koornwinder oscillator”, Theoretical and Mathematical Physics, 175:3 (2013), 765–770 | DOI | MR | Zbl

[14] V. V. Borzov, E. V. Damaskinsky, “The algebra of two dimensional generalized Chebyshev–Koornwinder oscillator”, Journal of Mathematical Physics, 55 (2014), 103505 | DOI | MR | Zbl

[15] G. Von Gehlen, S. Roan, “The superintegrable chiral Potts quantum chain and generalized Chebyshev polynomials”, Integrable Structures of Exactly Solvable Two-Dimensional Models of Quantum Field Theory, NATO Science Series, 35, eds. S. Pakuliak, G. Von Gehlen, Springer, Berlin, 2001, 155–172 | MR

[16] G. Von Gehlen, “Onsager's algebra and partially orthogonal polynomials”, Int. J. Mod. Phys. B, 16 (2002), 2129–2136 | DOI | MR | Zbl

[17] P. K. Suetin, Klassicheskie ortogonalnye mnogochleny, Nauka, M., 1979 | MR

[18] N. Burbaki, Gruppy i algebry Li, Gl. IV–VI, Mir, M., 1972 | MR

[19] Ken B. Dunn, R. Lidl, “Generalizations of the classical Chebyshev polynomials to polynomials in two variables”, Czech. Math. J., 32 (1982), 516–528 | MR | Zbl

[20] E. V. Damaskinskii, P. P. Kulish, M. A. Sokolov, O vychislenii proizvodyaschikh funktsii obobschennykh polinomov Chebysheva neskolkikh peremennykh, Preprint 13/2014, POMI

[21] SUN JiaChang, “A new class of three-variable orthogonal polynomials and their recurrences relations”, Science in China, Series A: Mathematics, 51, Jun. (2008), 1071–1092 | DOI | MR | Zbl