Degenerately integrable systems
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 23, Tome 433 (2015), pp. 224-245

Voir la notice de l'article provenant de la source Math-Net.Ru

This is a short survey of degenerate integrability is Hamiltonian mechanics. The first section contains a short description of degenerately integrable systems. It is followed by a number of examples which include spin Calogero model, Casimir models, integrable models on symplectic leaves of Poisson Lie groups and some others. Bibliography: 27 titles.
@article{ZNSL_2015_433_a11,
     author = {N. Reshetikhin},
     title = {Degenerately integrable systems},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {224--245},
     publisher = {mathdoc},
     volume = {433},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_433_a11/}
}
TY  - JOUR
AU  - N. Reshetikhin
TI  - Degenerately integrable systems
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2015
SP  - 224
EP  - 245
VL  - 433
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2015_433_a11/
LA  - en
ID  - ZNSL_2015_433_a11
ER  - 
%0 Journal Article
%A N. Reshetikhin
%T Degenerately integrable systems
%J Zapiski Nauchnykh Seminarov POMI
%D 2015
%P 224-245
%V 433
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2015_433_a11/
%G en
%F ZNSL_2015_433_a11
N. Reshetikhin. Degenerately integrable systems. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 23, Tome 433 (2015), pp. 224-245. http://geodesic.mathdoc.fr/item/ZNSL_2015_433_a11/