@article{ZNSL_2015_433_a10,
author = {A. G. Pronko},
title = {The five-vertex model and enumerations of plane partitions},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {204--223},
year = {2015},
volume = {433},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_433_a10/}
}
A. G. Pronko. The five-vertex model and enumerations of plane partitions. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 23, Tome 433 (2015), pp. 204-223. http://geodesic.mathdoc.fr/item/ZNSL_2015_433_a10/
[1] L. A. Takhtadzhyan, L. D. Faddeev, “Kvantovyi metod obratnoi zadachi i XYZ model Geizenberga”, UMN, 34:5 (1979), 13–63 | MR
[2] V. E. Korepin, N. M. Bogoliubov, A. G. Izergin, Quantum inverse scattering method and correlation functions, Cambridge University Press, Cambridge, 1993 | MR | Zbl
[3] P. P. Kulish, “Quantum difference nonlinear Shroedinger equation”, Lett. Math. Phys., 5 (1981), 191–197 | DOI | MR | Zbl
[4] V. S. Gerdjikov, M. I. Ivanov, P. P. Kulish, “Expansions over the “squared” solutions and difference evolution equations”, J. Math. Phys., 25 (1984), 25–34 | DOI | MR
[5] N. M. Bogoliubov, R. K. Bullough, G. D. Pang, “Exact solution of a $q$-boson hopping model”, Phys. Rev. B, 47 (1993), 11945–11498 | DOI
[6] N. M. Bogolyubov, P. P. Kulish, “Tochno-reshaemye modeli kvantovoi nelineinoi optiki”, Zap. nauchn. semin. POMI, 398, 2012, 26–54 | MR
[7] N. M. Bogoliubov, T. Nasar, “On the spectrum of the non-Hermitian phase-difference model”, Phys. Lett. A, 234 (1997), 345–350 | DOI | MR | Zbl
[8] V. E. Korepin, “Calculations of norms of Bethe wave functions”, Commun. Math. Phys., 86 (1982), 391–418 | DOI | MR | Zbl
[9] A. G. Izergin, “Statsumma shestivershinnoi modeli v konechnom ob'eme”, DAN, 297 (1987), 331–334 | MR
[10] A. G. Izergin, D. A. Coker, V. E. Korepin, “Determinant formula for the six-vertex model”, J. Phys. A, 25 (1992), 4315–4334 | DOI | MR | Zbl
[11] G. Kuberberg, “Another proof of the alternating-sign matrix conjecture”, Int. Res. Math. Notices, 1996 (1996), 139–150 | DOI | MR
[12] D. M. Bressoud, Proofs and Confirmations: The Story of the Alternating Sign Matrix Conjecture, Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl
[13] N. M. Bogoliubov, “Boxed plane partitions as an exactly solvable boson model”, J. Phys. A, 38 (2005), 9415–9430 | DOI | MR | Zbl
[14] N. M. Bogolyubov, “Chetyrekhvershinnaya model i sluchainye ukladki”, Teor. mat. fiz., 155:1 (2008), 25–38 | DOI | MR | Zbl
[15] N. M. Bogoliubov, C. Malyshev, “Correlation functions of XX0 Heisenberg chain, q-binomial determinants, and random walks”, Nucl. Phys. B, 879 (2014), 268–291 | DOI | MR | Zbl
[16] N. M. Bogolyubov, “Skalyarnye proizvedeniya vektorov sostoyanii v polnostyu asimmetrichnykh tochno reshaemykh modelyakh na koltse”, Zap. nauchn. semin. POMI, 398, 2012, 5–25 | MR
[17] F. Colomo, A. G. Pronko, “The arctic curve of the domain-wall six-vertex model”, J. Stat. Phys., 138 (2010), 662–700 | DOI | MR | Zbl
[18] F. Colomo, A. G. Pronko, “The limit shape of large alternating-sign matrices”, SIAM J. Discrete Math., 24 (2010), 1558–1571 | DOI | MR | Zbl
[19] F. Colomo, A. G. Pronko, “Third-order phase transition in random tilings”, Phys. Rev. E, 88 (2013), 042125 | DOI
[20] F. Colomo, A. G. Pronko, “Thermodynamics of the six-vertex model in an $L$-shaped domain”, Comm. Math. Phys., 339:2 (2015), 699–728 | MR | Zbl
[21] N. M. Bogolyubov, “Pyativershinnaya model s fiksirovannymi granichnymi usloviyami”, Algebra i analiz, 21:3 (2009), 58–78 | MR | Zbl
[22] R. J. Baxter, Exactly solved models in statistical mechanics, Academic Press, San Diego, CA, 1982 | MR | Zbl
[23] G. E. Andrews, The Theory of Partitions, Addison-Wesley Publishing, 1976 | MR | Zbl
[24] V. S. Kapitonov, A. G. Pronko, “Pyativershinnaya model i ploskie razbieniya v yaschike”, Zap. nauchn. semin. POMI, 360, 2008, 162–179 | MR | Zbl
[25] V. S. Kapitonov, A. G. Pronko, “Vzveshennye perechisleniya ploskikh razbienii v yaschike i neodnorodnaya pyativershinnaya model”, Zap. nauchn. semin. POMI, 398, 2012, 125–144 | MR
[26] H. Cohn, M. Larsen, J. Propp, “The shape of a typical boxed plane partition”, New York J. Math., 4 (1998), 137–165 | MR | Zbl
[27] I. G. Macdonald, Symmetric Functions and Hall Polynomials, 2nd edn., Oxford University Press, Oxford, 1995 | MR | Zbl
[28] A. G. Pronko, “O veroyatnosti obrazovaniya pustoty v svobodnofermionnoi shestivershinnoi modeli s granichnymi usloviyami domennoi stenki”, Zap. nauchn. semin. POMI, 398, 2012, 179–208 | MR
[29] A. Erdelyi, Higher transcendental functions, v. 1, McGraw-Hill, New York, 1953 | Zbl
[30] K. Okamoto, “Studies on the Painlevé equations. I. Sixth Painleve Equation $\mathrm{P_{VI}}$”, Ann. Mat. Pura Appl., 146 (1987), 337–381 | DOI | MR | Zbl
[31] P. J. Forrester, N. S. Witte, “Application of the $\tau$-function theory of Painlevé equations to random matrices: PVI, the JUE, CyUE, cJUE and scaled limits”, Nagoya Math. J., 174 (2004), 29–114 | MR | Zbl