Representations of quantum conjugacy classes of orthosymplectic groups
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 23, Tome 433 (2015), pp. 20-40

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be the complex symplectic or special orthogonal group and $\mathfrak g$ its Lie algebra. With every point $x$ of the maximal torus $T\subset G$ we associate a highest weight module $M_x$ over the Drinfeld–Jimbo quantum group $U_q(\mathfrak g)$ and a quantization of the conjugacy class of $x$ by operators in $\mathrm{End}(M_x)$. These quantizations are isomorphic for $x$ lying on the same orbit of the Weyl group, and $M_x$ support different representations of the same quantum conjugacy class.
@article{ZNSL_2015_433_a1,
     author = {Th. Ashton and A. Mudrov},
     title = {Representations of quantum conjugacy classes of orthosymplectic groups},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {20--40},
     publisher = {mathdoc},
     volume = {433},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_433_a1/}
}
TY  - JOUR
AU  - Th. Ashton
AU  - A. Mudrov
TI  - Representations of quantum conjugacy classes of orthosymplectic groups
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2015
SP  - 20
EP  - 40
VL  - 433
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2015_433_a1/
LA  - en
ID  - ZNSL_2015_433_a1
ER  - 
%0 Journal Article
%A Th. Ashton
%A A. Mudrov
%T Representations of quantum conjugacy classes of orthosymplectic groups
%J Zapiski Nauchnykh Seminarov POMI
%D 2015
%P 20-40
%V 433
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2015_433_a1/
%G en
%F ZNSL_2015_433_a1
Th. Ashton; A. Mudrov. Representations of quantum conjugacy classes of orthosymplectic groups. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 23, Tome 433 (2015), pp. 20-40. http://geodesic.mathdoc.fr/item/ZNSL_2015_433_a1/