@article{ZNSL_2015_433_a1,
author = {Th. Ashton and A. Mudrov},
title = {Representations of quantum conjugacy classes of orthosymplectic groups},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {20--40},
year = {2015},
volume = {433},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_433_a1/}
}
Th. Ashton; A. Mudrov. Representations of quantum conjugacy classes of orthosymplectic groups. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 23, Tome 433 (2015), pp. 20-40. http://geodesic.mathdoc.fr/item/ZNSL_2015_433_a1/
[1] J. Donin, A. Mudrov, “Explicit equivariant quantization on coadjoint orbits of $GL(n,\mathbb C)$”, Lett. Math. Phys., 62 (2002), 17–32 | DOI | MR | Zbl
[2] A. Mudrov, “Quantum conjugacy classes of simple matrix groups”, Commun. Math. Phys., 272 (2007), 635–660 | DOI | MR | Zbl
[3] A. Mudrov, “Non-Levi closed conjugacy classes of $SP_q(2n)$”, Commun. Math. Phys., 317 (2013), 317–345 | DOI | MR | Zbl
[4] A. Mudrov, “Non-Levi closed conjugacy classes of $SO_q(N)$”, J. Math. Phys., 54 (2013), 081701 | DOI | MR | Zbl
[5] T. Ashton, A. Mudrov, “Quantization of borderline Levi conjugacy classes of orthogonal groups”, J. Math. Phys., 55 (2014), 121702 | DOI | MR | Zbl
[6] T. Ashton, A. Mudrov, “On representations of quantum conjugacy classes of $GL(n)$”, Lett. Math. Phys., 103 (2013), 1029–1045 | DOI | MR | Zbl
[7] J. Donin, D. Gurevich, S. Shnider, Quantization of function algebras on semisimple orbits in $\mathfrak g^*$, arXiv: q-alg/9607008
[8] T. Oshima, “Annihilators of generalized Verma modules of the scalar type for classical Lie algebras”, Harmonic Analysis, Group Representations, Automorphic forms and Invariant Theory, Lecture Notes Series, 12, IMS, National University of Singapore, 2007, 277–319 | MR
[9] M. Semenov-Tian-Shansky, “Poisson-Lie Groups, Quantum Duality Principle, and the Quantum Double”, Contemp. Math., 175 (1994), 219–248 | DOI | MR | Zbl
[10] J. Donin, A. Mudrov, “Dynamical Yang–Baxter equation and quantum vector bundles”, Commun. Math. Phys., 254 (2005), 719–760 | DOI | MR | Zbl
[11] B. Enriquez, P. Etingof, “Quantization of classical dynamical r-matrices with nonabelian base”, Commun. Math. Phys., 254 (2005), 603–650 | DOI | MR | Zbl
[12] B. Enriquez, P. Etingof, I. Marshall, “Quantization of some Poisson-Lie dynamical r-matrices and Poisson homogeneous spaces”, Contemp. Math., 433 (2007), 135–176 | DOI | MR
[13] A. Alekseev, A. Lachowska, “Invariant $*$-product on coadjoint orbits and the Shapovalov pairing”, Comment. Math. Helv., 80 (2005), 795–810 | DOI | MR | Zbl
[14] E. Karolinsky, A. Stolin, V. Tarasov, “Irreducible highest weight modules and equivariant quantization”, Adv. Math., 211 (2007), 266–283 | DOI | MR | Zbl
[15] V. Drinfeld, “Quantum Groups”, Proc. Int. Congress of Mathematicians (Berkeley, 1986), ed. Gleason A. V., AMS, Providence, 1987, 798–820 | MR
[16] T. Ashton, A. Mudrov, $R$-matrix and Mickelsson algebras for orthosymplectic quantum groups, arXiv: 1410.6493
[17] A. Mudrov, $R$-matrix and inverse Shapovalov form, arXiv: 1412.3384
[18] V. Chari, A. Pressley, A guide to quantum groups, Cambridge University Press, Cambridge 1995 | MR | Zbl
[19] J. C. Jantzen, Lectures on quantum groups, Grad. Stud. in Math., 6, AMS, Providence, RI, 1996 | MR | Zbl
[20] C. de Concini, V. G. Kac, “Representations of quantum groups at roots of 1”, Operator algebras, unitary representations, enveloping algebras, and invariant theory (Paris, 1989), Progress in Mathematics, 92, Birkhäuser, 1990, 471–506 | MR
[21] S. Khoroshkin, O. Ogievetsky, “Mickelsson algebras and Zhelobenko operators”, Journal of Algebra, 319 (2008), 2113–2165 | DOI | MR | Zbl
[22] I. N. Bernstein, I. M. Gelfand, S. I. Gelfand, “Structure of Representations that are generated by vectors of highest weight”, Functional. Anal. Appl., 5:1 (1971), 1–8 | DOI | MR | Zbl
[23] V. Drinfeld, “Almost cocommutative Hopf algebras”, Leningrad Math. J., 1:2 (1990), 321–342 | MR | Zbl
[24] P. Pyatov, P. Saponov, “Characteristic relations for quantum matrices”, J. Phys. A, 28 (1995), 4415–4421 | DOI | MR | Zbl
[25] P. Pyatov, O. Ogievetsky, Orthogonal and symplectic quantum matrix algebras and Cayley–Hamilton theorem for them, arXiv: math/0511618[math.QA]