Representations and use of symbolic computations in the theory of Heun equations
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIV, Tome 432 (2015), pp. 162-176
Voir la notice de l'article provenant de la source Math-Net.Ru
A first-order $2\times2$ system equivalent to the Heun equation is obtained. A deformed Heun equation in symmetric form is presented. Series solutions of this equation are presented. A four-parameter subfamily of deformed confluent Heun equation whose solutions have integral representations is found.
@article{ZNSL_2015_432_a9,
author = {A. Ya. Kazakov and S. Yu. Slavyanov},
title = {Representations and use of symbolic computations in the theory of {Heun} equations},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {162--176},
publisher = {mathdoc},
volume = {432},
year = {2015},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_432_a9/}
}
TY - JOUR AU - A. Ya. Kazakov AU - S. Yu. Slavyanov TI - Representations and use of symbolic computations in the theory of Heun equations JO - Zapiski Nauchnykh Seminarov POMI PY - 2015 SP - 162 EP - 176 VL - 432 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2015_432_a9/ LA - en ID - ZNSL_2015_432_a9 ER -
A. Ya. Kazakov; S. Yu. Slavyanov. Representations and use of symbolic computations in the theory of Heun equations. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIV, Tome 432 (2015), pp. 162-176. http://geodesic.mathdoc.fr/item/ZNSL_2015_432_a9/