Representations and use of symbolic computations in the theory of Heun equations
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIV, Tome 432 (2015), pp. 162-176

Voir la notice de l'article provenant de la source Math-Net.Ru

A first-order $2\times2$ system equivalent to the Heun equation is obtained. A deformed Heun equation in symmetric form is presented. Series solutions of this equation are presented. A four-parameter subfamily of deformed confluent Heun equation whose solutions have integral representations is found.
@article{ZNSL_2015_432_a9,
     author = {A. Ya. Kazakov and S. Yu. Slavyanov},
     title = {Representations and use of symbolic computations in the theory of {Heun} equations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {162--176},
     publisher = {mathdoc},
     volume = {432},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_432_a9/}
}
TY  - JOUR
AU  - A. Ya. Kazakov
AU  - S. Yu. Slavyanov
TI  - Representations and use of symbolic computations in the theory of Heun equations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2015
SP  - 162
EP  - 176
VL  - 432
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2015_432_a9/
LA  - en
ID  - ZNSL_2015_432_a9
ER  - 
%0 Journal Article
%A A. Ya. Kazakov
%A S. Yu. Slavyanov
%T Representations and use of symbolic computations in the theory of Heun equations
%J Zapiski Nauchnykh Seminarov POMI
%D 2015
%P 162-176
%V 432
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2015_432_a9/
%G en
%F ZNSL_2015_432_a9
A. Ya. Kazakov; S. Yu. Slavyanov. Representations and use of symbolic computations in the theory of Heun equations. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIV, Tome 432 (2015), pp. 162-176. http://geodesic.mathdoc.fr/item/ZNSL_2015_432_a9/