@article{ZNSL_2015_432_a8,
author = {P. B. Zatitskiy},
title = {Scaling entropy sequence: invariance and examples},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {128--161},
year = {2015},
volume = {432},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_432_a8/}
}
P. B. Zatitskiy. Scaling entropy sequence: invariance and examples. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIV, Tome 432 (2015), pp. 128-161. http://geodesic.mathdoc.fr/item/ZNSL_2015_432_a8/
[1] A. N. Kolmogorov, “Novyi metricheskii invariant tranzitivnykh dinamicheskikh sistem i avtomorfizmov prostranstv Lebega”, DAN SSSR, 119 (1958), 861–864 | MR | Zbl
[2] A. N. Kolmogorov, “Ob entropii na edinitsu vremeni kak metricheskom invariante avtomorfizmov”, DAN SSSR, 124 (1959), 754–755 | MR | Zbl
[3] Ya. G. Sinai, “O ponyatii entropii dinamicheskoi sistemy”, DAN SSSR, 124 (1959), 768–771 | MR | Zbl
[4] V. A. Rokhlin, “Lektsii po entropiinoi teorii preobrazovanii s invariantnoi meroi”, UMN, 22:5(137) (1967), 3–56 | MR | Zbl
[5] S. D. Ornstein, Ergodic Theory, Randomness, and Dynamical Systems, Yale University Press, New Haven–London, 1974 | MR | Zbl
[6] I. P. Kornfeld, Ya. G. Sinai, S. V. Fomin, Ergodicheskaya teoriya, Nauka, M., 1980 | MR
[7] A. M. Vershik, “Informatsiya, entropiya, dinamika”, Matematika KhKh veka. Vzglyad iz Peterburga, MTsNMO, M., 2010
[8] A. M. Vershik, “Dynamics of metrics in measure spaces and their asymptotic invariants”, Markov Process. Related Fields, 16:1 (2010), 169–184 | MR | Zbl
[9] A. M. Vershik, “Masshtabirovannaya entropiya i avtomorfizmy s chisto tochechnym spektrom”, Algebra i analiz, 23:1 (2011), 111–135 | MR | Zbl
[10] S. Ferenczi, “Measure-theoretic complexity of ergodic systems”, Israel J. Math., 100 (1997), 189–207 | DOI | MR | Zbl
[11] A. Katok, J.-P. Thouvenot, “Slow entropy type invariants and smooth realization of commuting measure-preserving transformations”, Ann. Inst. H. Poincaré Probab. Statist., 33:3 (1997), 323–338 | DOI | MR | Zbl
[12] A. M. Vershik, P. B. Zatitskiy, F. V. Petrov, “Geometry and dynamics of admissible metrics in measure spaces”, Cent. Eur. J. Math., 11:3 (2013), 379–400 | DOI | MR | Zbl
[13] P. B. Zatitskii, F. V. Petrov, “Ob ispravlenii metrik”, Zap. nauchn. semin. POMI, 390, 2011, 201–209 | MR
[14] A. M. Vershik, P. B. Zatitskii, F. V. Petrov, “Virtualnaya nepreryvnost funktsii mnogikh peremennykh i eë prilozheniya”, Uspekhi mat. nauk (to appear)
[15] P. B. Zatitskii, “O masshtabiruyuschei entropiinoi posledovatelnosti dinamicheskoi sistemy”, Funkts. anal. i ego pril., 48:4 (2014), 70–74 | DOI
[16] V. A. Rokhlin, “Ob osnovnykh ponyatiyakh teorii mery”, Mat. sb., 25(67):1 (1949), 107–150 | MR | Zbl
[17] A. M. Vershik, A. D. Gorbulskii, “Masshtabirovannaya entropiya filtratsii $\sigma$-algebr”, Teor. veroyatn. i ee primen., 52:3 (2007), 446–467 | DOI | MR | Zbl
[18] M. Queffélec, Substitution Dynamical Systems. Spectral Analysis, 2nd edition, Springer-Verlag, Berlin, 2010 | MR | Zbl
[19] K. Teturo, “A topological invariant of substitution minimal sets”, J. Math. Soc. Japan, 24 (1972), 285–306 | DOI | MR
[20] J. C. Martin, “Substitution minimal flows”, Amer. J. Math., 93 (1971), 503–526 | DOI | MR | Zbl
[21] F. M. Dekking, “The spectrum of dynamical systems arising from substitutions of constant length”, Z. Wahrscheinlichkeitstheor. Verw. Geb., 41:3 (1977/78), 221–239 | DOI | MR