Scaling entropy sequence: invariance and examples
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIV, Tome 432 (2015), pp. 128-161

Voir la notice de l'article provenant de la source Math-Net.Ru

A scaling entropy sequence of an automorphism is an entropy-type metric invariant suggested by A. M. Vershik. We confirm his conjecture that it does not depend on the choice of a semimetric. This means that it is indeed a metric invariant. We also calculate this invariant for several classical dynamical systems.
@article{ZNSL_2015_432_a8,
     author = {P. B. Zatitskiy},
     title = {Scaling entropy sequence: invariance and examples},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {128--161},
     publisher = {mathdoc},
     volume = {432},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_432_a8/}
}
TY  - JOUR
AU  - P. B. Zatitskiy
TI  - Scaling entropy sequence: invariance and examples
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2015
SP  - 128
EP  - 161
VL  - 432
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2015_432_a8/
LA  - ru
ID  - ZNSL_2015_432_a8
ER  - 
%0 Journal Article
%A P. B. Zatitskiy
%T Scaling entropy sequence: invariance and examples
%J Zapiski Nauchnykh Seminarov POMI
%D 2015
%P 128-161
%V 432
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2015_432_a8/
%G ru
%F ZNSL_2015_432_a8
P. B. Zatitskiy. Scaling entropy sequence: invariance and examples. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIV, Tome 432 (2015), pp. 128-161. http://geodesic.mathdoc.fr/item/ZNSL_2015_432_a8/