Scaling entropy sequence: invariance and examples
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIV, Tome 432 (2015), pp. 128-161 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A scaling entropy sequence of an automorphism is an entropy-type metric invariant suggested by A. M. Vershik. We confirm his conjecture that it does not depend on the choice of a semimetric. This means that it is indeed a metric invariant. We also calculate this invariant for several classical dynamical systems.
@article{ZNSL_2015_432_a8,
     author = {P. B. Zatitskiy},
     title = {Scaling entropy sequence: invariance and examples},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {128--161},
     year = {2015},
     volume = {432},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_432_a8/}
}
TY  - JOUR
AU  - P. B. Zatitskiy
TI  - Scaling entropy sequence: invariance and examples
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2015
SP  - 128
EP  - 161
VL  - 432
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2015_432_a8/
LA  - ru
ID  - ZNSL_2015_432_a8
ER  - 
%0 Journal Article
%A P. B. Zatitskiy
%T Scaling entropy sequence: invariance and examples
%J Zapiski Nauchnykh Seminarov POMI
%D 2015
%P 128-161
%V 432
%U http://geodesic.mathdoc.fr/item/ZNSL_2015_432_a8/
%G ru
%F ZNSL_2015_432_a8
P. B. Zatitskiy. Scaling entropy sequence: invariance and examples. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIV, Tome 432 (2015), pp. 128-161. http://geodesic.mathdoc.fr/item/ZNSL_2015_432_a8/

[1] A. N. Kolmogorov, “Novyi metricheskii invariant tranzitivnykh dinamicheskikh sistem i avtomorfizmov prostranstv Lebega”, DAN SSSR, 119 (1958), 861–864 | MR | Zbl

[2] A. N. Kolmogorov, “Ob entropii na edinitsu vremeni kak metricheskom invariante avtomorfizmov”, DAN SSSR, 124 (1959), 754–755 | MR | Zbl

[3] Ya. G. Sinai, “O ponyatii entropii dinamicheskoi sistemy”, DAN SSSR, 124 (1959), 768–771 | MR | Zbl

[4] V. A. Rokhlin, “Lektsii po entropiinoi teorii preobrazovanii s invariantnoi meroi”, UMN, 22:5(137) (1967), 3–56 | MR | Zbl

[5] S. D. Ornstein, Ergodic Theory, Randomness, and Dynamical Systems, Yale University Press, New Haven–London, 1974 | MR | Zbl

[6] I. P. Kornfeld, Ya. G. Sinai, S. V. Fomin, Ergodicheskaya teoriya, Nauka, M., 1980 | MR

[7] A. M. Vershik, “Informatsiya, entropiya, dinamika”, Matematika KhKh veka. Vzglyad iz Peterburga, MTsNMO, M., 2010

[8] A. M. Vershik, “Dynamics of metrics in measure spaces and their asymptotic invariants”, Markov Process. Related Fields, 16:1 (2010), 169–184 | MR | Zbl

[9] A. M. Vershik, “Masshtabirovannaya entropiya i avtomorfizmy s chisto tochechnym spektrom”, Algebra i analiz, 23:1 (2011), 111–135 | MR | Zbl

[10] S. Ferenczi, “Measure-theoretic complexity of ergodic systems”, Israel J. Math., 100 (1997), 189–207 | DOI | MR | Zbl

[11] A. Katok, J.-P. Thouvenot, “Slow entropy type invariants and smooth realization of commuting measure-preserving transformations”, Ann. Inst. H. Poincaré Probab. Statist., 33:3 (1997), 323–338 | DOI | MR | Zbl

[12] A. M. Vershik, P. B. Zatitskiy, F. V. Petrov, “Geometry and dynamics of admissible metrics in measure spaces”, Cent. Eur. J. Math., 11:3 (2013), 379–400 | DOI | MR | Zbl

[13] P. B. Zatitskii, F. V. Petrov, “Ob ispravlenii metrik”, Zap. nauchn. semin. POMI, 390, 2011, 201–209 | MR

[14] A. M. Vershik, P. B. Zatitskii, F. V. Petrov, “Virtualnaya nepreryvnost funktsii mnogikh peremennykh i eë prilozheniya”, Uspekhi mat. nauk (to appear)

[15] P. B. Zatitskii, “O masshtabiruyuschei entropiinoi posledovatelnosti dinamicheskoi sistemy”, Funkts. anal. i ego pril., 48:4 (2014), 70–74 | DOI

[16] V. A. Rokhlin, “Ob osnovnykh ponyatiyakh teorii mery”, Mat. sb., 25(67):1 (1949), 107–150 | MR | Zbl

[17] A. M. Vershik, A. D. Gorbulskii, “Masshtabirovannaya entropiya filtratsii $\sigma$-algebr”, Teor. veroyatn. i ee primen., 52:3 (2007), 446–467 | DOI | MR | Zbl

[18] M. Queffélec, Substitution Dynamical Systems. Spectral Analysis, 2nd edition, Springer-Verlag, Berlin, 2010 | MR | Zbl

[19] K. Teturo, “A topological invariant of substitution minimal sets”, J. Math. Soc. Japan, 24 (1972), 285–306 | DOI | MR

[20] J. C. Martin, “Substitution minimal flows”, Amer. J. Math., 93 (1971), 503–526 | DOI | MR | Zbl

[21] F. M. Dekking, “The spectrum of dynamical systems arising from substitutions of constant length”, Z. Wahrscheinlichkeitstheor. Verw. Geb., 41:3 (1977/78), 221–239 | DOI | MR