Some generalizations of the Cauchy--Davenport theorem
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIV, Tome 432 (2015), pp. 105-110
Voir la notice de l'article provenant de la source Math-Net.Ru
We investigate two possible generalizations of the Cauchy–Davenport inequality $|A+B|\geq\min(p,|A|+|B|-1)$ for nonempty sets $A,B$ of residues modulo a prime number $p$. The first one deals with another way of measuring the size of a set of points in an affine space (rather than just taking the cardinality), namely, with algebraic complexity. The second one concentrates on the multiplicative group of a field.
@article{ZNSL_2015_432_a6,
author = {V. V. Volkov and F. V. Petrov},
title = {Some generalizations of the {Cauchy--Davenport} theorem},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {105--110},
publisher = {mathdoc},
volume = {432},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_432_a6/}
}
V. V. Volkov; F. V. Petrov. Some generalizations of the Cauchy--Davenport theorem. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIV, Tome 432 (2015), pp. 105-110. http://geodesic.mathdoc.fr/item/ZNSL_2015_432_a6/