Some generalizations of the Cauchy–Davenport theorem
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIV, Tome 432 (2015), pp. 105-110 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We investigate two possible generalizations of the Cauchy–Davenport inequality $|A+B|\geq\min(p,|A|+|B|-1)$ for nonempty sets $A,B$ of residues modulo a prime number $p$. The first one deals with another way of measuring the size of a set of points in an affine space (rather than just taking the cardinality), namely, with algebraic complexity. The second one concentrates on the multiplicative group of a field.
@article{ZNSL_2015_432_a6,
     author = {V. V. Volkov and F. V. Petrov},
     title = {Some generalizations of the {Cauchy{\textendash}Davenport} theorem},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {105--110},
     year = {2015},
     volume = {432},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_432_a6/}
}
TY  - JOUR
AU  - V. V. Volkov
AU  - F. V. Petrov
TI  - Some generalizations of the Cauchy–Davenport theorem
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2015
SP  - 105
EP  - 110
VL  - 432
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2015_432_a6/
LA  - ru
ID  - ZNSL_2015_432_a6
ER  - 
%0 Journal Article
%A V. V. Volkov
%A F. V. Petrov
%T Some generalizations of the Cauchy–Davenport theorem
%J Zapiski Nauchnykh Seminarov POMI
%D 2015
%P 105-110
%V 432
%U http://geodesic.mathdoc.fr/item/ZNSL_2015_432_a6/
%G ru
%F ZNSL_2015_432_a6
V. V. Volkov; F. V. Petrov. Some generalizations of the Cauchy–Davenport theorem. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIV, Tome 432 (2015), pp. 105-110. http://geodesic.mathdoc.fr/item/ZNSL_2015_432_a6/

[1] H. Davenport, “On the addition of residue classes”, J. London Math. Soc., 10 (1935), 30–32 | Zbl

[2] N. Alon, M. B. Natanson, I. Z. Ruzsa, “Adding distinct congruence classes modulo a prime”, Amer. Math. Monthly, 102 (1995), 250–255 | DOI | MR | Zbl

[3] S. Eliahou, M. Kervaire, “Sumsets in vector spaces over finite fields”, J. Number Theory, 71:1 (1998), 12–39 | DOI | MR | Zbl

[4] G. Károlyi, “Cauchy–Davenport theorem in group extensions”, L'Enseignement Mathematique, 51 (2005), 239–254 | MR | Zbl

[5] J. P. Wheeler, The Cauchy–Davenport theorem for finite groups, arXiv: 1202.1816

[6] F. Petrov, “Combinatorial Nullstellensatz approach to polynomial expansion”, Acta Arith., 165 (2014), 279–282 | DOI | MR | Zbl

[7] http://mathoverflow.net/questions/37044/cauchy-davenport-strengthening