Some generalizations of the Cauchy--Davenport theorem
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIV, Tome 432 (2015), pp. 105-110

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate two possible generalizations of the Cauchy–Davenport inequality $|A+B|\geq\min(p,|A|+|B|-1)$ for nonempty sets $A,B$ of residues modulo a prime number $p$. The first one deals with another way of measuring the size of a set of points in an affine space (rather than just taking the cardinality), namely, with algebraic complexity. The second one concentrates on the multiplicative group of a field.
@article{ZNSL_2015_432_a6,
     author = {V. V. Volkov and F. V. Petrov},
     title = {Some generalizations of the {Cauchy--Davenport} theorem},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {105--110},
     publisher = {mathdoc},
     volume = {432},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_432_a6/}
}
TY  - JOUR
AU  - V. V. Volkov
AU  - F. V. Petrov
TI  - Some generalizations of the Cauchy--Davenport theorem
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2015
SP  - 105
EP  - 110
VL  - 432
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2015_432_a6/
LA  - ru
ID  - ZNSL_2015_432_a6
ER  - 
%0 Journal Article
%A V. V. Volkov
%A F. V. Petrov
%T Some generalizations of the Cauchy--Davenport theorem
%J Zapiski Nauchnykh Seminarov POMI
%D 2015
%P 105-110
%V 432
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2015_432_a6/
%G ru
%F ZNSL_2015_432_a6
V. V. Volkov; F. V. Petrov. Some generalizations of the Cauchy--Davenport theorem. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIV, Tome 432 (2015), pp. 105-110. http://geodesic.mathdoc.fr/item/ZNSL_2015_432_a6/