Equipped graded graphs, projective limits of simplices, and their boundaries
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIV, Tome 432 (2015), pp. 83-104 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this paper, we develop a theory of equipped graded graphs (or Bratteli diagrams) and an alternative theory of projective limits of finite-dimensional simplices. An equipment is an additional structure on the graph, namely, a system of “cotransition” probabilities on the set of its paths. The main problem is to describe all probability measures on the path space of the graph with given cotransition probabilities; it goes back to the problem, posed by E. B. Dynkin in the 1960s, of describing exit and entrance boundaries for Markov chains. The most important example is the problem of describing all central measures; those of describing states on AF-algebras or characters on locally finite groups can be reduced to it. We suggest an unification of the whole theory, an interpretation of the notions of Martin, Choquet, and Dynkin boundaries in terms of equipped graded graphs and in terms of the theory of projective limits of simplices. In the last section, we study the new notion of “standardness" of projective limits of simplices and of equipped Bratteli diagrams, as well as the notion of "lacunarization.”
@article{ZNSL_2015_432_a5,
     author = {A. M. Vershik},
     title = {Equipped graded graphs, projective limits of simplices, and their boundaries},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {83--104},
     year = {2015},
     volume = {432},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_432_a5/}
}
TY  - JOUR
AU  - A. M. Vershik
TI  - Equipped graded graphs, projective limits of simplices, and their boundaries
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2015
SP  - 83
EP  - 104
VL  - 432
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2015_432_a5/
LA  - ru
ID  - ZNSL_2015_432_a5
ER  - 
%0 Journal Article
%A A. M. Vershik
%T Equipped graded graphs, projective limits of simplices, and their boundaries
%J Zapiski Nauchnykh Seminarov POMI
%D 2015
%P 83-104
%V 432
%U http://geodesic.mathdoc.fr/item/ZNSL_2015_432_a5/
%G ru
%F ZNSL_2015_432_a5
A. M. Vershik. Equipped graded graphs, projective limits of simplices, and their boundaries. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIV, Tome 432 (2015), pp. 83-104. http://geodesic.mathdoc.fr/item/ZNSL_2015_432_a5/

[1] A. M. Vershik, “Teorema o lakunarnom izomorfizme monotonnykh posledovatelnostei razbienii”, Funkts. anal. i ego pril., 2:3 (1968), 17–21 | MR | Zbl

[2] A. M. Vershik, “Teoriya ubyvayuschikh posledovatelnostei izmerimykh razbienii”, Algebra i analiz, 6:4 (1994), 1–68 | MR | Zbl

[3] A. M. Vershik, “Zadacha opisaniya tsentralnykh mer na prostranstvakh putei graduirovannykh grafov”, Funkts. anal. i ego pril., 48:4 (2014), 26–46 | DOI

[4] A. M. Vershik, “Vnutrennyaya metrika na graduirovannykh grafakh, standartnost i invariantnye mery”, Zap. nauchn. semin. POMI, 421, 2014, 58–67 | Zbl

[5] A. M. Vershik, S. V. Kerov, “Lokalno poluprostye algebry. Kombinatornaya teoriya i $K_0$-funktor”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Nov. dostizh., 26, VINITI, M., 1985, 3–56 | MR | Zbl

[6] A. M. Vershik, S. V. Kerov, “Asimptotika maksimalnoi i tipichnoi razmernostei neprivodimykh predstavlenii simmetricheskoi gruppy”, Funkts. anal. i ego pril., 19:1 (1985), 25–36 | MR | Zbl

[7] E. B. Dynkin, “Prostranstvo vykhodov markovskogo protsessa”, Uspekhi mat. nauk, 24:4(148) (1969), 89–152 | MR | Zbl

[8] F. M. Goodman, S. V. Kerov, “The Martin boundary of the Young–Fibonacci lattice”, J. Algebraic Combin., 11:1 (2000), 17–48 | DOI | MR | Zbl

[9] V. Kaimanovich, A. Vershik, “Random walks on discrete groups: Boundary and entropy”, Ann. Prob., 11:3 (1983), 457–490 | DOI | MR | Zbl

[10] S. V. Kerov, Asymptotic Representation Theory of the Symmetric Group and its Applications in Analysis, Amer. Math. Soc., Providence, Rhode Island, 2003 | MR | Zbl

[11] S. Kerov, A. Okounkov, G. Olshanski, “The boundary of the Young graph with Jack edge multiplicities”, Int. Math. Res. Not., 1998:4 (1998), 173–199 | DOI | MR | Zbl

[12] A. Vershik, “Smooth and non-smooth AF-algebras and a problem on invariant measures”, Proceedings of the St. Petersburg School in Probability and Statistical Physics, June 2012