Modelling of measures close to central ones on the three-dimensional Young graph
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIV, Tome 432 (2015), pp. 68-82
Cet article a éte moissonné depuis la source Math-Net.Ru
We describe some computer experiments with 3D Young diagrams for modelling a Markov process whose properties are close to those of the Plancherel growth process in the two-dimensional case. The transition probabilities of this process are defined by formulas that use the lengths of 3D hooks. These formulas were obtained by generalizing well-known formulas for the Plancherel growth process probabilities. Although this 3D Markov process does not generate a central measure, we show that this measure is close to a central one.
@article{ZNSL_2015_432_a4,
author = {N. N. Vasiliev and A. B. Terent'ev},
title = {Modelling of measures close to central ones on the three-dimensional {Young} graph},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {68--82},
year = {2015},
volume = {432},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_432_a4/}
}
N. N. Vasiliev; A. B. Terent'ev. Modelling of measures close to central ones on the three-dimensional Young graph. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIV, Tome 432 (2015), pp. 68-82. http://geodesic.mathdoc.fr/item/ZNSL_2015_432_a4/
[1] A. M. Vershik, S. V. Kerov, “Asimptoticheskaya teoriya kharakterov simmetricheskoi gruppy”, Funkts. anal. i ego pril., 15:4 (1981), 15–27 | MR | Zbl
[2] A. M. Borodin, “Multiplikativnye tsentralnye mery na grafe Shura. II”, Zap. nauchn. semin. POMI, 240, 1997, 44–52 | MR | Zbl
[3] S. V. Kerov, “Differentsialnaya model rosta diagramm Yunga”, Trudy S.-Peterburgskogo mat. obschestva, 5, 1996, 165–192
[4] A. M. Vershik, D. Pavlov, “Chislennye eksperimenty v zadachakh asimptoticheskoi teorii predstavlenii”, Zap. nauchn. semin. POMI, 373, 2009, 77–93 | MR