Modelling of measures close to central ones on the three-dimensional Young graph
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIV, Tome 432 (2015), pp. 68-82 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We describe some computer experiments with 3D Young diagrams for modelling a Markov process whose properties are close to those of the Plancherel growth process in the two-dimensional case. The transition probabilities of this process are defined by formulas that use the lengths of 3D hooks. These formulas were obtained by generalizing well-known formulas for the Plancherel growth process probabilities. Although this 3D Markov process does not generate a central measure, we show that this measure is close to a central one.
@article{ZNSL_2015_432_a4,
     author = {N. N. Vasiliev and A. B. Terent'ev},
     title = {Modelling of measures close to central ones on the three-dimensional {Young} graph},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {68--82},
     year = {2015},
     volume = {432},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_432_a4/}
}
TY  - JOUR
AU  - N. N. Vasiliev
AU  - A. B. Terent'ev
TI  - Modelling of measures close to central ones on the three-dimensional Young graph
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2015
SP  - 68
EP  - 82
VL  - 432
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2015_432_a4/
LA  - ru
ID  - ZNSL_2015_432_a4
ER  - 
%0 Journal Article
%A N. N. Vasiliev
%A A. B. Terent'ev
%T Modelling of measures close to central ones on the three-dimensional Young graph
%J Zapiski Nauchnykh Seminarov POMI
%D 2015
%P 68-82
%V 432
%U http://geodesic.mathdoc.fr/item/ZNSL_2015_432_a4/
%G ru
%F ZNSL_2015_432_a4
N. N. Vasiliev; A. B. Terent'ev. Modelling of measures close to central ones on the three-dimensional Young graph. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIV, Tome 432 (2015), pp. 68-82. http://geodesic.mathdoc.fr/item/ZNSL_2015_432_a4/

[1] A. M. Vershik, S. V. Kerov, “Asimptoticheskaya teoriya kharakterov simmetricheskoi gruppy”, Funkts. anal. i ego pril., 15:4 (1981), 15–27 | MR | Zbl

[2] A. M. Borodin, “Multiplikativnye tsentralnye mery na grafe Shura. II”, Zap. nauchn. semin. POMI, 240, 1997, 44–52 | MR | Zbl

[3] S. V. Kerov, “Differentsialnaya model rosta diagramm Yunga”, Trudy S.-Peterburgskogo mat. obschestva, 5, 1996, 165–192

[4] A. M. Vershik, D. Pavlov, “Chislennye eksperimenty v zadachakh asimptoticheskoi teorii predstavlenii”, Zap. nauchn. semin. POMI, 373, 2009, 77–93 | MR