On birational Darboux coordinates on coadjoint orbits of classical complex Lie groups
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIV, Tome 432 (2015), pp. 36-57 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Any coadjoint orbit of the general linear group can be canonically parameterized using an iteration method, where at each step we turn from the matrix of a transformation $A$ to the matrix of the transformation that is the projection of $A$ parallel to an eigenspace of this transformation to a coordinate subspace. We present a modification of the method applicable to the groups $\mathrm{SO}(N,\mathbb C)$ and $\mathrm{Sp}(N,\mathbb C)$. One step of the iteration consists of two actions, namely, the projection parallel to a subspace of an eigenspace and the simultaneous restriction to a subspace containing a co-eigenspace. The iteration gives a set of couples of functions $p_k,q_k$ on the orbit such that the symplectic form of the orbit is equal to $\sum_kdp_k\wedge dq_k$. No restrictions on the Jordan form of the matrices forming the orbit are imposed. A coordinate set of functions is selected in the important case of the absence of nontrivial Jordan blocks corresponding to the zero eigenvalue, which is the case $\dim\ker A=\dim\ker A^2$. This case contains the case of general position, the general diagonalizable case, and many others.
@article{ZNSL_2015_432_a2,
     author = {M. V. Babich},
     title = {On birational {Darboux} coordinates on coadjoint orbits of classical complex {Lie} groups},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {36--57},
     year = {2015},
     volume = {432},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_432_a2/}
}
TY  - JOUR
AU  - M. V. Babich
TI  - On birational Darboux coordinates on coadjoint orbits of classical complex Lie groups
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2015
SP  - 36
EP  - 57
VL  - 432
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2015_432_a2/
LA  - en
ID  - ZNSL_2015_432_a2
ER  - 
%0 Journal Article
%A M. V. Babich
%T On birational Darboux coordinates on coadjoint orbits of classical complex Lie groups
%J Zapiski Nauchnykh Seminarov POMI
%D 2015
%P 36-57
%V 432
%U http://geodesic.mathdoc.fr/item/ZNSL_2015_432_a2/
%G en
%F ZNSL_2015_432_a2
M. V. Babich. On birational Darboux coordinates on coadjoint orbits of classical complex Lie groups. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIV, Tome 432 (2015), pp. 36-57. http://geodesic.mathdoc.fr/item/ZNSL_2015_432_a2/

[1] I. M. Gelfand, M. A. Naimark, Unitarnye predstavleniya klassicheskikh grupp, Tr. MIAN SSSR, 36, 1950, 288 pp. | MR | Zbl

[2] S. E. Derkachov, A. N. Manashov, “$\mathcal R$-Matrix and Baxter $\mathcal Q$-Operators for the Noncompact $\mathrm{SL}(N,\mathbb C)$ Invariant Spin Chain”, SIGMA, 2 (2006), 084 ; arXiv: nlin/0612003[nlin.SI] | DOI | MR | Zbl

[3] M. V. Babich, S. E. Derkachev, “O ratsionalnoi simplekticheskoi parametrizatsii koprisoedinennoi orbity $GL(N,\mathbb C)$, diagonalizuemyi sluchai”, Algebra i analiz, 22:3 (2010), 16–31 | MR | Zbl

[4] M. V. Babich, Rational version of Archimedes symplectomorphysm and birational Darboux coordinates on coadjoint orbit of GL(N,C), Preprint MPIM2010-59, MPIM, Bonn, 2010

[5] S. Lie (unter Mitwirkung von F. Engel), Theorie der Transformatiensgruppen, Abschn. 3, Teubner, Leipzig, 1893

[6] A. A. Kirillov, “Unitarnye predstavleniya nilpotentnykh grupp Li”, UMN, 17:4(106) (1962), 57–110 | MR | Zbl

[7] V. I. Arnold, Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1989 | MR

[8] V. Guillemin, E. Lerman, S. Sternberg, Symplectic fibrations and multiplicity diagrams, Cambridge University Press, Cambridge, 1996 | MR | Zbl

[9] D. MacDuff, D. Salmon, Introduction to symplectic topology, University Press, Oxford, 1998 | MR

[10] A. G. Reiman, M. A. Semenov-Tyan-Shanskii, Integriruemye sistemy. Teoretiko-gruppovoi podkhod, Institut kompyuternykh issledovanii, Moskva–Izhevsk, 2003