@article{ZNSL_2015_432_a14,
author = {A. Khvedelidze and I. Rogojin},
title = {On the geometric probability of entangled mixed states},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {274--296},
year = {2015},
volume = {432},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_432_a14/}
}
A. Khvedelidze; I. Rogojin. On the geometric probability of entangled mixed states. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIV, Tome 432 (2015), pp. 274-296. http://geodesic.mathdoc.fr/item/ZNSL_2015_432_a14/
[1] E. Schrödinger, “Die gegenwärtige situation in der Quantenmechanik”, Die Naturwissenschaften, 23 (1935), 807–812, 823–828, 844–849 | DOI | DOI | DOI | Zbl
[2] R. F. Werner, “Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden-variable model”, Phys. Rev. A, 40 (1989), 4277–4281 | DOI
[3] W. Thirring, R. A. Bertlmann, P. Köhler, H. Narnhofer, “Entanglement or separability; the choice how to factorize the algebra of a density matrix”, Eur. Phys. D, 64 (2011), 181–196 | DOI
[4] L. Gurvits, “Classical deterministic complexity of Edmond's problem and quantum entanglement”, Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of Computing, ACM, New York, 2003, 10–19, (electronic) | MR
[5] L. M. Ioannou, “Computational complexity of the quantum separability problem”, Quantum Information Computation, 7:8 (2007), 335–370 ; arXiv: quant-ph/0603199v7 | MR | Zbl
[6] E. A. Morozova, N. N. Chentsov, “Markov invariant geometry on state manifolds”, Itogi Nauki Tehniki. Ser. Sovr. Probl. Matem. Noveish. Dostizh., 36, 1990, 69–102 | MR | Zbl
[7] D. Petz, C. Sudar, “Geometries of quantum states”, J. Math. Phys., 37 (1996), 2662–2673 | DOI | MR | Zbl
[8] K. Zyczkowki, P. Horodecki, A. Sanpera, M. Lewenstein, “Volume of the set of separable states”, Phys. Rev. A, 58 (1998), 883–892 | DOI | MR
[9] K. Zyczkowki, “Volume of the set of separable states. II”, Phys. Rev. A, 60 (1999), 3496–3507 | DOI | MR
[10] J. Schlienz, G. Mahler, “Description of entanglement”, Phys. Rev. A, 52 (1995), 4396–4404 | DOI
[11] J. von Neumann, “Wahrscheinlichkeitstheoretischer Aufbau der Quantenmechanik”, Göttingen Nachrichten, 1927 (1927), 245–272 | Zbl
[12] L. D. Landau, “Das dämpfungsproblem in der Wellenmechanik”, Zeitschrift für Physik, 45 (1927), 430–441 | DOI | Zbl
[13] J. Dittmann, “On the Riemannian metrics on the space of density matrices”, Rep. Math. Phys., 36 (1995), 309–315 | DOI | MR | Zbl
[14] D. P. Zelobenko, Compact Lie groups and their representations, Translations of Mathematical Monographs, 40, AMS, 1978 | MR
[15] S. M. Deen, P. K. Kabir, G. Karl, “Positivity constraints on density matrices”, Phys. Rev. D, 4 (1971), 1662–1666 | DOI
[16] V. Gerdt, A. Khvedelidze, Yu. Palii, “Constraints on $\mathrm{SU(2)\otimes SU(2)}$ invariant polynomials for entangled qubit pairs”, Yad. Fiz., 74:6 (2001), 919–955
[17] Lin Chen, Dragomir Z. Dokovi, “Dimensions, lengths and separability in finite-dimensional quantum systems”, J. Math. Phys., 54 (2013), 022201, 13 pp. | DOI | MR | Zbl
[18] U. Fano, “Description of states in quantum mechanics by density matrix and operator techniques”, Rev. Mod. Phys., 29 (1957), 74–93 | DOI | MR | Zbl
[19] A. Peres, “Separability criterion for density matrices”, Phys. Rev. Lett., 77 (1996), 1413–1415 | DOI | MR | Zbl
[20] M. Horodecki, P. Horodecki, R. Horodecki, “Separability of mixed states: necessary and sufficient conditions”, Phys. Lett. A, 223 (1996), 1–8 | DOI | MR | Zbl
[21] P. Horodecki, “Separability criterion and inseparable mixed states with positive partial transpose”, Phys. Lett., 232 (1977), 333–339 | DOI | MR
[22] N. Linden, S. Popescu, “On multi-particle entanglement”, Fortschr. Phys., 46 (1998), 567–578 | 3.0.CO;2-H class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR
[23] M. Grassl, M. Rötteler, T. Beth, “Computing local invariants of qubit systems”, Phys. Rev. A, 58 (1998), 1833–1859 | DOI | MR
[24] R. C. King, T. A. Welsh, P. D. Jarvis, “The mixed two-qubit system and the structure of its ring of local invariants”, J. Phys. A: Math. Theor., 40 (2007), 10083–10108 | DOI | MR | Zbl
[25] V. Gerdt, Yu. Palii, A. Khvedelidze, “On the ring of local invariants for a pair of entangled qubits”, J. Math. Sci., 168:3 (2010), 368–378 | DOI | MR | Zbl
[26] V. Gerdt, A. Khvedelidze, D. Mladenov, Yu. Palii, “$SU(6)$ Casimir invariants and $\mathrm{SU(2)\otimes SU(3)}$ scalars for a mixed qubit-qutrit states”, Zap. Nauchn. Semin. POMI, 387, 2001, 102–121 | MR
[27] C. Quesne, “$SU(2)\otimes SU(2)$ scalars in the enveloping algebra of $SU(4)$”, J. Math. Phys., 17 (1976), 1452–1467 | DOI | MR
[28] M. Kus, K. Źyczkowski, “Geometry of entangled states”, Phys. Rev. A, 63 (2001), 032307, 21 pp. | DOI | MR
[29] F. Verstraete, K. Audenaert, B. D. Moor, “Maximally entangled mixed states of two qubits”, Phys. Rev., 64 (2001), 012316, 6 pp. | DOI
[30] R. Hildebrand, “Positive partial transpose spectra”, Phys. Rev. A, 76 (2007), 052325, 5 pp. | DOI | MR
[31] E. Lubkin, “Entropy of an $n$-system from its correlation with a $k$-reservoir”, J. Math. Phys., 19 (1978), 1028–1031 | DOI | Zbl
[32] S. Lloyd, H. Pagels, “Complexity as thermodynamic depth”, Ann. Phys. NY, 188 (1988), 186–213 | DOI | MR
[33] D. N. Page, “Average entropy of a subsystem”, Phys. Rev. Lett., 71 (1993), 1291–1294 | DOI | MR | Zbl
[34] D. J. C. Bures, “An extension of Kakutani's theorem on infinite product measures to the tensor product of semidefinite $\omega^*$-algebras”, Trans. Am. Mat. Soc., 135 (1969), 199–212 | MR | Zbl
[35] S. L. Braunstein, C. M. Caves, “Statistical distance and the geometry of quantum states”, Phys. Rev. Lett., 72 (1994), 3439–3443 | DOI | MR | Zbl
[36] H.-J. Sommers, K. Zyczkowski, “Bures volume of the set of mixed quantum states”, J. Phys. A: Math. Theor., 36 (2003), 10083–10100 | DOI | MR | Zbl
[37] A. Uhlmann, “Density operators as an arena for differential geometry”, Rep. Math. Phys., 33 (1993), 253–263 | DOI | MR | Zbl
[38] M. Hübner, “Explicit computation of the Bures distance for density matrices”, Phys. Lett. A, 163 (1992), 239–242 | DOI | MR
[39] M. J. Hall, “Random quantum correlations and density operator distributions”, Phys. Lett. A, 242 (1998), 123–129 | DOI | MR | Zbl
[40] K. Zyczkowski, H.-J. Sommers, “Hilbert–Schmidt volume of the set of mixed quantum states”, J. Phys. A: Math. Theor., 36 (2003), 10115–10130 | DOI | MR | Zbl
[41] S. L. Braunstein, “Geometry of quantum inference”, Phys. Lett. A, 219 (1966), 169–174 | DOI | MR
[42] K. Zyczkowski, H.-J. Sommers, “Induced measures in the space of mixed states”, J. Phys. A: Math. Theor., 34 (2001), 7111–7125 | DOI | MR | Zbl
[43] V. Al. Osipov, H.-J. Sommeres, K. Zyczkowski, “Random Bures mixed states and the distribution of their purity”, J. Phys. A: Math. Theor., 43 (2010), 055302, 22 pp. | DOI | MR | Zbl
[44] J. Ginibre, “Statistical ensembles of complex, quaternion, and real matrices”, J. Math. Phys., 6 (1965), 440–339 | DOI | MR
[45] P. B. Slater, “Dyson indices and Hilbert–Schmidt separability functions and probabilities”, J. Phys. A: Math. Theor., 40 (2007), 14279–14308 | DOI | MR | Zbl
[46] P. B. Slater, “Eigenvalues, separability and absolute separability of two-qubit states”, J. Geom. Phys., 59 (2009), 17–31 | DOI | MR | Zbl
[47] J. Batle, M. Casas, A. Plastino, A. R. Plastino, “Metrics, entanglement, and mixedness in the space of two-qubits”, Phys. Lett. A, 353 (2006), 161–165 | DOI | MR | Zbl