Random deviations of ergodic sums for the Pascal adic transformation in the case of the Lebesgue measure
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIV, Tome 432 (2015), pp. 224-260

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper generalizes results by E. Janvresse, T. de la Rue, and Y. Velenik on fluctuations in ergodic sums for the Pascal adic transformation in the case of the Lebesgue measure for a wide class of functions. In particular, we answer several questions from the above-mentioned paper.
@article{ZNSL_2015_432_a12,
     author = {A. R. Minabutdinov},
     title = {Random deviations of ergodic sums for the {Pascal} adic transformation in the case of the {Lebesgue} measure},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {224--260},
     publisher = {mathdoc},
     volume = {432},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_432_a12/}
}
TY  - JOUR
AU  - A. R. Minabutdinov
TI  - Random deviations of ergodic sums for the Pascal adic transformation in the case of the Lebesgue measure
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2015
SP  - 224
EP  - 260
VL  - 432
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2015_432_a12/
LA  - ru
ID  - ZNSL_2015_432_a12
ER  - 
%0 Journal Article
%A A. R. Minabutdinov
%T Random deviations of ergodic sums for the Pascal adic transformation in the case of the Lebesgue measure
%J Zapiski Nauchnykh Seminarov POMI
%D 2015
%P 224-260
%V 432
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2015_432_a12/
%G ru
%F ZNSL_2015_432_a12
A. R. Minabutdinov. Random deviations of ergodic sums for the Pascal adic transformation in the case of the Lebesgue measure. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIV, Tome 432 (2015), pp. 224-260. http://geodesic.mathdoc.fr/item/ZNSL_2015_432_a12/