Random deviations of ergodic sums for the Pascal adic transformation in the case of the Lebesgue measure
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIV, Tome 432 (2015), pp. 224-260
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper generalizes results by E. Janvresse, T. de la Rue, and Y. Velenik on fluctuations in ergodic sums for the Pascal adic transformation in the case of the Lebesgue measure for a wide class of functions. In particular, we answer several questions from the above-mentioned paper.
@article{ZNSL_2015_432_a12,
author = {A. R. Minabutdinov},
title = {Random deviations of ergodic sums for the {Pascal} adic transformation in the case of the {Lebesgue} measure},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {224--260},
publisher = {mathdoc},
volume = {432},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_432_a12/}
}
TY - JOUR AU - A. R. Minabutdinov TI - Random deviations of ergodic sums for the Pascal adic transformation in the case of the Lebesgue measure JO - Zapiski Nauchnykh Seminarov POMI PY - 2015 SP - 224 EP - 260 VL - 432 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2015_432_a12/ LA - ru ID - ZNSL_2015_432_a12 ER -
%0 Journal Article %A A. R. Minabutdinov %T Random deviations of ergodic sums for the Pascal adic transformation in the case of the Lebesgue measure %J Zapiski Nauchnykh Seminarov POMI %D 2015 %P 224-260 %V 432 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2015_432_a12/ %G ru %F ZNSL_2015_432_a12
A. R. Minabutdinov. Random deviations of ergodic sums for the Pascal adic transformation in the case of the Lebesgue measure. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIV, Tome 432 (2015), pp. 224-260. http://geodesic.mathdoc.fr/item/ZNSL_2015_432_a12/