Random deviations of ergodic sums for the Pascal adic transformation in the case of the Lebesgue measure
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIV, Tome 432 (2015), pp. 224-260 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper generalizes results by E. Janvresse, T. de la Rue, and Y. Velenik on fluctuations in ergodic sums for the Pascal adic transformation in the case of the Lebesgue measure for a wide class of functions. In particular, we answer several questions from the above-mentioned paper.
@article{ZNSL_2015_432_a12,
     author = {A. R. Minabutdinov},
     title = {Random deviations of ergodic sums for the {Pascal} adic transformation in the case of the {Lebesgue} measure},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {224--260},
     year = {2015},
     volume = {432},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_432_a12/}
}
TY  - JOUR
AU  - A. R. Minabutdinov
TI  - Random deviations of ergodic sums for the Pascal adic transformation in the case of the Lebesgue measure
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2015
SP  - 224
EP  - 260
VL  - 432
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2015_432_a12/
LA  - ru
ID  - ZNSL_2015_432_a12
ER  - 
%0 Journal Article
%A A. R. Minabutdinov
%T Random deviations of ergodic sums for the Pascal adic transformation in the case of the Lebesgue measure
%J Zapiski Nauchnykh Seminarov POMI
%D 2015
%P 224-260
%V 432
%U http://geodesic.mathdoc.fr/item/ZNSL_2015_432_a12/
%G ru
%F ZNSL_2015_432_a12
A. R. Minabutdinov. Random deviations of ergodic sums for the Pascal adic transformation in the case of the Lebesgue measure. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIV, Tome 432 (2015), pp. 224-260. http://geodesic.mathdoc.fr/item/ZNSL_2015_432_a12/

[1] A. M. Vershik, “Ravnomernaya algebraicheskaya approksimatsiya operatorov sdviga i umnozheniya”, DAN SSSR, 259:3 (1981), 526–529 | MR | Zbl

[2] A. M. Vershik, “Teorema o markovskoi periodicheskoi approksimatsii v ergodicheskoi teorii”, Zap. nauchn. semin. LOMI, 115, 1982, 72–82 | MR | Zbl

[3] A. M. Vershik, “Avtomorfizm Paskalya imeet nepreryvnyi spektr”, Funkts. anal. i ego pril., 45:3 (2011), 16–33 | DOI | MR | Zbl

[4] A. A. Lodkin, I. E. Manaev, A. R. Minabutdinov, “Asimptotika masshtabirovannoi entropii avtomorfizma Paskalya”, Zap. nauchn. semin. POMI, 378, 2010, 58–72 | MR

[5] A. P. Minabutdinov, I. E. Manaev, “Funktsiya Kruskala–Katony, posledovatelnost Konveya, krivaya Takagi i avtomorfizm Paskalya”, Zap. nauchn. semin. POMI, 411, 2013, 135–147

[6] A. A. Lodkin, I. E. Manaev, A. R. Minabutdinov, “Realizatsiya avtomorfizma Paskalya v grafe konkatenatsii i funktsiya $s_2(n)$”, Zap. nauchn. semin. POMI, 403, 2012, 95–102 | MR

[7] E. M. Rudo, “Asimptotika raspredelenii sluchainykh bluzhdanii na mnogomernykh grafakh Paskalya i na reshetkakh kornei”, Zap. nauchn. semin. POMI, 403, 2012, 158–171 | MR

[8] P. Allaart, K. Kawamura, “The Takagi function: a survey”, Real Anal. Exchange, 37:1 (2012), 1–54 | MR | Zbl

[9] L. Berg, M. Krüppel, “De Rham's singular function and related functions”, Z. Anal. Anwendungen, 19:1 (2000), 227–237 | DOI | MR | Zbl

[10] P. Billingsley, Probability and Measure, 3rd edition, Wiley, New York, 1995 | MR | Zbl

[11] E. de Amo, M. Diaz Carrillo, J. Fernandez-Sanchez, “Singular functions with applications to fractal dimensions and generalized Takagi functions”, Acta Appl. Math., 119:1 (2012), 129–148 | DOI | MR | Zbl

[12] M. de Amo, J. Fernandez-Sanchez, “A generalised dyadic representation system”, Internat. J. Pure Appl. Math., 52:1 (2009), 49–66 | MR | Zbl

[13] G. de Rham, “Sur quelques courbes définies par des équations fonctionnelles”, Rend. Sem. Mat., 16 (1956), 101–113 | MR

[14] R. Girgensohn, “Nowhere differentiable solutions of a system of functional equations”, Aequationes Math., 47:1 (1994), 89–99 | DOI | MR | Zbl

[15] R. Girgensohn, “Digital sums and functional equations”, Integers, 12:1 (2012), 141–160 | DOI | MR | Zbl

[16] A. Hajan, Y. Ito, S. Kakutani, “Invariant measure and orbits of dissipative transformations”, Adv. Math., 9:1 (1972), 52–65 | DOI | MR

[17] G. Halasz, “Remarks on the remainder in Birkhoff's ergodic theorem”, Acta Math. Acad. Sci. Hungar., 28:3–4 (1976), 389–395 | DOI | MR | Zbl

[18] E. Janvresse, T. de la Rue, “The Pascal adic transformation is loosely Bernoulli”, Ann. Inst. H. Poincaré Prob. Statist., 40:2 (2004), 133–139 | DOI | MR | Zbl

[19] E. Janvresse, T. de la Rue, Y. Velenik, “Self-similar corrections to the ergodic theorem for the Pascal-adic transformation”, Stoch. Dyn., 5:1 (2005), 1–25 | DOI | MR | Zbl

[20] S. Jukna, Extremal Combinatorics. With Applications in Computer Science, Springer, Berlin, 2010 | MR

[21] S. Kakutani, “A problem of equidistribution on the unit interval $[0,1]$”, Lect. Notes Math., 541, 1976, 369–375 | DOI | MR | Zbl

[22] K. Kawamura, “On the set of points where Lebesgue's singular function has the derivative zero”, Proc. Japan Acad. Ser. A, 87:9 (2011), 162–166 | DOI | MR | Zbl

[23] M. Krüppel, “De Rham's singular function, its partial derivatives with respect to the parameter and binary digital sums”, Rostocker Math. Kolloq., 64 (2009), 57–74 | MR | Zbl

[24] N. R. Ladhawala, “Absolute summability of Walsh–Fourier series”, Pacific J. Math., 65:1 (1976), 103–108 | DOI | MR | Zbl

[25] Z. Lomnicki, S. Ulam, “Sur la théorie de la mesure dans les espaces combinatoires et son application au calcul des probabilités. I. Variables indépendantes”, Fund. Math., 23 (1934), 237–278 | Zbl

[26] X. Mela, K. Petersen, “Dynamical properties of the Pascal adic transformation”, Ergodic Theory Dynam. Systems, 25:1 (2005), 227–256 | DOI | MR | Zbl

[27] T. Takagi, “A simple example of the continuous function without derivative”, Proc. Phys.-Math. Soc., 5–6 (1903), 176–177

[28] E. Trollope, “An explicit expression for binary digital sums”, Mat. Mag., 41 (1968), 21–25 | DOI | MR | Zbl

[29] D. Volný, “Invariance principles and Gaussian approximation for strictly stationary processes”, Trans. Amer. Math. Soc., 351:8 (1999), 3351–3371 | DOI | MR | Zbl