Calculations in exceptional groups, an update
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIV, Tome 432 (2015), pp. 177-195
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

This paper is a slightly expanded text of our talk at the PCA-2014. There, we announced two recent results, concerning explicit polynomial equations defining exceptional Chevalley groups in microweight or adjoint representations. One of these results is an explicit characteristic-free description of equations on the entries of a matrix from the simply connected Chevalley group $G(\mathrm E_7,R)$ in the $56$-dimensional representation $V$. Before, similar description was known for the group $G(\mathrm E_6,R)$ in the $27$-dimensional representation, whereas for the group of type $\mathrm E_7$ it was only known under the simplifying assumption that $2\in R^*$. In particular, we compute the normalizer of $G(\mathrm E_7,R)$ in $\mathrm{GL}(56,R)$ and establish that, as also the normalizer of the elementary subgroup $E(\mathrm E_7,R)$, it coincides with the extended Chevalley group $\bar G(\mathrm E_7,R)$. The construction is based on the works of J.Lurie and the first author on the $\mathrm E_7$-invariant quartic forms on $V$. Another major new result is a complete description of quadratic equations defining the highest weight orbit in the adjoint representations of Chevalley groups of types $\mathrm E_6$, $\mathrm E_7$ and $\mathrm E_8$. Part of these equations not involving zero weights, the so-called square equations (or $\pi/2$-equations) were described by the second author. Recently, the first author succeeded in completing these results, explicitly listing also the equations involving zero weight coordinates linearly (the $2\pi/3$-equations) and quadratically (the $\pi$-equations). Also, we briefly discuss recent results by S. Garibaldi and R. M. Guralnick on octic invariants for $\mathrm E_8$.
@article{ZNSL_2015_432_a10,
     author = {A. Luzgarev and N. Vavilov},
     title = {Calculations in exceptional groups, an update},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {177--195},
     year = {2015},
     volume = {432},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_432_a10/}
}
TY  - JOUR
AU  - A. Luzgarev
AU  - N. Vavilov
TI  - Calculations in exceptional groups, an update
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2015
SP  - 177
EP  - 195
VL  - 432
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2015_432_a10/
LA  - en
ID  - ZNSL_2015_432_a10
ER  - 
%0 Journal Article
%A A. Luzgarev
%A N. Vavilov
%T Calculations in exceptional groups, an update
%J Zapiski Nauchnykh Seminarov POMI
%D 2015
%P 177-195
%V 432
%U http://geodesic.mathdoc.fr/item/ZNSL_2015_432_a10/
%G en
%F ZNSL_2015_432_a10
A. Luzgarev; N. Vavilov. Calculations in exceptional groups, an update. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIV, Tome 432 (2015), pp. 177-195. http://geodesic.mathdoc.fr/item/ZNSL_2015_432_a10/

[1] H. Apte, A. Stepanov, “Local-global principle for congruence subgroups of Chevalley groups”, Cent. Eur. J. Math., 12:6 (2014), 801–812 | DOI | MR | Zbl

[2] M. Aschbacher, “Some multilinear forms with large isometry groups”, Geom. Dedicata, 25:1–3 (1988), 417–465 | MR | Zbl

[3] A. Bak, R. Hazrat, N. Vavilov, “Localization-completion strikes again: relative $\mathrm K_1$ is nilpotent”, J. Pure Appl. Algebra, 213 (2009), 1075–1085 | DOI | MR | Zbl

[4] S. Berman, R. V. Moody, “Extensions of Chevalley groups”, Israel J. Math., 22:1 (1975), 42–51 | DOI | MR | Zbl

[5] A. Borel, J. Tits, “Groupes réductifs”, Inst. Hautes Études Sci. Publ. Math., 27 (1965), 55–150 | DOI | MR

[6] R. B. Brown, “Groups of type $\mathrm E_7$”, J. reine angew. math., 236 (1969), 79–102 | MR | Zbl

[7] E. I. Bunina, “Automorphisms of Chevalley groups of different types over commutative rings”, J. Algebra, 355:1 (2012), 154–170 | DOI | MR | Zbl

[8] M. Cederwall, J. Palmkvist, “The octic $\mathrm E_8$ invariant”, J. Math. Phys., 48:7 (2007), 073505, 7 pp. | DOI | MR | Zbl

[9] B. N. Cooperstein, “The fifty-six-dimensional module for $\mathrm E_7$. I. A four form for $\mathrm E_7$”, J. Algebra, 173:2 (1995), 361–389 | DOI | MR | Zbl

[10] M. Demazure, A. Grothendieck (with the collaboration of M. Artin, J.-E. Bertin, P. Gabriel, M. Raynaud and J-P. Serre), Schémas en groupes (SGA 3), Séminaire de Géométrie Algébrique du Bois Marie 1962–64,, v. I, Documents Mathématiques (Paris), 7, Propriétés générales des schémas en groupes, Revised and annotated edition of the 1970 French original, eds. Ph. Gille, P. Polo, Société Mathématique de France, Paris, 2011, 610 pp. ; v. II, Groupes de type multiplicatif, et structure des schémas en groupes généraux ; v. III, Documents Mathématiques (Paris), 8, Structure des schémas en groupes réductifs, Société Mathématique de France, Paris, 2011, 337 pp. http://webusers.imj-prg.fr/~patrick.polo/SGA3/ | MR | MR | Zbl

[11] J. R. Faulkner, J. C. Ferrar, “Exceptional Lie algebras and related algebraic and geometric structures”, Bull. London Math. Soc., 9:1 (1977), 1–35 | DOI | MR | Zbl

[12] S. Garibaldi, R. M. Guralnick, Simple algebraic groups are (usually) determined by an invariant, 2013, 24 pp., arXiv: 1309.6611v1[math.GR]

[13] S. Garibaldi, R. M. Guralnick, Simple groups stabilizing polynomials, 2014, 32 pp., arXiv: 1309.6611v2[math.GR]

[14] R. Hazrat, V. Petrov, N. Vavilov, “Relative subgroups in Chevalley groups”, J. K-Theory, 5:3 (2010), 603–618 | DOI | MR | Zbl

[15] R. Hazrat, A. Stepanov, N. Vavilov, Zuhong Zhang, “The yoga of commutators”, J. Math. Sci. (N.Y.), 179:6 (2011), 662–678 | DOI | MR | Zbl

[16] R. Hazrat, A. Stepanov, N. Vavilov, Zuhong Zhang, “The yoga of commutators: further applications”, J. Math. Sci. (N.Y.), 200:6 (2014), 742–768 | DOI | MR | Zbl

[17] R. Hazrat, A. Stepanov, N. Vavilov, Zuhong Zhang, “Commutators width in Chevalley groups”, Note di Matematica, 33:1 (2013), 139–170 | MR | Zbl

[18] R. Hazrat, N. Vavilov, “$K_1$ of Chevalley groups are nilpotent”, J. Pure Appl. Algebra, 179:1 (2003), 99–116 | DOI | MR | Zbl

[19] R. Hazrat, N. Vavilov, Zuhong Zhang, “Relative commutator calculus in Chevalley groups”, J. Algebra, 383:1 (2013), 262–293 | DOI | MR

[20] R. Hazrat, N. Vavilov, Zuhong Zhang, “Generation of relative commutator subgroups in Chevalley groups”, Proc. Edinburgh Math. Soc. (to appear) , 19 pp.

[21] W. van der Kallen, “Another presentation for Steinberg groups”, Indag. Math., 39:4 (1977), 304–312 | MR

[22] E. A. Kulikova, A. K. Stavrova, “Centralizer of the elementary subgroup of an isotropic reductive group”, Vestnik St. Petersburg Univ. Math., 46:1 (2013), 22–28 | DOI | MR | Zbl

[23] A. Lavrenov, Another presentation for symplectic Steinberg groups, 2014, 37 pp., arXiv: 1405.4296[math.KT] | MR

[24] W. Lichtensein, “A system of quadrics describing the orbit of the highest weight vector”, Proc. Amer. Math. Soc., 84:4 (1982), 605–608 | DOI | MR

[25] M. W. Liebeck, G. M. Seitz, “On the subgroup structure of exceptional groups of Lie type”, Trans. Amer. Math. Soc., 350:9 (1998), 3409–3482 | DOI | MR | Zbl

[26] J. Lurie, “On simply laced Lie algebras and their minuscule representations”, Comment. Math. Helv., 76:3 (2001), 515–575 | DOI | MR | Zbl

[27] A. Yu. Luzgarev, “Fourth-degree invariants for $G(\mathrm E_7,R)$ not depending on the characteristic”, Vestnik St. Petersburg Univ. Math., 46:1 (2013), 29–34 | DOI | MR | Zbl

[28] A. Luzgarev, Equations determining the orbit of the highest weight vector in the adjoint representation, 2014, 13 pp., arXiv: 1401.0849[math.AG]

[29] A. Luzgarev, V. Petrov, N. Vavilov, Explicit equations on orbit of the highest weight vector (to appear)

[30] A. Yu. Luzgarev, A. K. Stavrova, “The elementary subgroup of an isotropic reductive group is perfect”, St. Petersburg Math. J., 23:5 (2012), 881–890 | DOI | MR | Zbl

[31] H. Matsumoto, “Sur les sous-groupes arithmétiques des groupes semi-simples déployés”, Ann. Sci. Ecole Norm. Sup. (4), 2 (1969), 1–62 | MR | Zbl

[32] V. A. Petrov, A. K. Stavrova, “Elementary subgroups in isotropic reductive groups”, St. Petersburg Math. J., 20:4 (2009), 625–644 | DOI | MR | Zbl

[33] E. Plotkin, “Stability theorems of $K1$-functor for Chevalley groups”, Nonassociative algebras and related topics (Hiroshima, 1990), World Sci. Publ., River Edge, NJ, 1991, 203–217 | MR | Zbl

[34] E. Plotkin, “Surjective stabilization of the $\mathrm K_1$-functor for some exceptional Chevalley groups”, J. Soviet Math., 64:1 (1993), 751–766 | DOI | MR | Zbl

[35] E. Plotkin, “On the stability of the K1-functor for Chevalley groups of type $\mathrm E_7$”, J. Algebra, 210:1 (1998), 67–85 | DOI | MR | Zbl

[36] E. Plotkin, A. Semenov, N. Vavilov, “Visual basic representations: an atlas”, Internat. J. Algebra Comput., 8:1 (1998), 61–95 | DOI | MR | Zbl

[37] A. N. Rudakov, “Deformations of simple Lie algebras”, Math USSR Izv., 5:5 (1971), 1113–1119 | DOI | MR | Zbl

[38] G. M. Seitz, The maximal subgroups of classical algebraic groups, Mem. Amer. Math. Soc., 67, no. 365, 1987 | MR

[39] S. S. Sinchuk, Parabolic factorisations of reductive groups, Ph. D. Thesis, St. Petersburg State Univ., 2013, 96 pp. (in Russian)

[40] S. S. Sinchuk, “Improved stability for the odd-dimensional orthogonal group”, J. Math. Sci. (N.Y.), 199:3 (2014), 343–349 | DOI | MR | Zbl

[41] A. Stavrova, “Homotopy invariance of non-stable $\mathrm K_1$-functors”, J. K-Theory, 13:2 (2014), 199–248 | DOI | MR | Zbl

[42] A. Stavrova, On the congruence kernel of isotropic groups over rings, 2013, 23 pp., arXiv: 1305.0057[math.GR]

[43] A. Stavrova, Non-stable $\mathrm K_1$-functors of multiloop groups, 2014, 24 pp., arXiv: 1404.7587[math.KT]

[44] M. R. Stein, “Stability theorems for $K_1$, $K_2$ and related functors modeled on Chevalley groups”, Japan. J. Math. (N.S.), 4:1 (1978), 77–108 | MR | Zbl

[45] A. Stepanov, “Elementary calculus in Chevalley groups over rings”, J. Prime Res. Math., 9 (2013), 79–95 | MR | Zbl

[46] A. Stepanov, “Structure of Chevalley groups over rings via universal localization”, J. K-Theory (to appear)

[47] A. Stepanov, “Non-abelian $K$-theory of Chevalley groups over rings”, J. Math. Sci. (N.Y.) (to appear)

[48] A. Stepanov, Structure theory and subgroups of Chevalley groups over rings, Habilitationsschrift, Saint Petersburg State Univ., 2014, 136 pp. (in Russian)

[49] A. Stepanov, N. Vavilov, “Decomposition of transvections: a theme with variations”, $K$-Theory, 19:2 (2000), 109–153 | DOI | MR | Zbl

[50] A. Stepanov, N. Vavilov, “On the length of commutators in Chevalley groups”, Israel J. Math., 185:1 (2011), 253–276 | DOI | MR | Zbl

[51] A. A. Suslin, “On the structure of the special linear group over polynomial rings”, Math. USSR Izv., 11:2 (1977), 221–238 | DOI | MR | Zbl

[52] A. Suslin, “Quillen's solution of Serre's problem”, J. $K$-Theory, 11:3 (2013), 549–552 | MR | Zbl

[53] N. A. Vavilov, “Structure of Chevalley groups over commutative rings”, Nonassociative algebras and related topics (Hiroshima, 1990), World Sci. Publ., River Edge, NJ, 1991, 219–335 | MR | Zbl

[54] N. A. Vavilov, “A third look at weight diagrams”, Rend. Sem. Mat. Univ. Padova, 104 (2000), 201–250 | MR | Zbl

[55] N. A. Vavilov, “An $\mathrm A_3$-proof of structure theorems for Chevalley groups of types $\mathrm E_6$ and $\mathrm E_7$”, Internat. J. Algebra Comput., 17:5–6 (2007), 1283–1298 | DOI | MR | Zbl

[56] N. A. Vavilov, “Can one see the signs of structure constants?”, St. Petersburg Math. J., 19:4 (2008), 519–543 | DOI | MR | Zbl

[57] N. A. Vavilov, “Weight elements of Chevalley groups”, St. Petersburg Math. J., 20:1 (2009), 23–57 | DOI | MR | Zbl

[58] N. A. Vavilov, “Numerology of quadratic equations”, St. Petersburg Math. J., 20:5 (2009), 687–707 | DOI | MR | Zbl

[59] N. A. Vavilov, “Some more exceptional numerology”, J. Math. Sci. (N.Y.), 171:3 (2010), 317–321 | DOI | MR | Zbl

[60] N. A. Vavilov, “An $\mathrm A_3$-proof of structure theorems for Chevalley groups of types $\mathrm E_6$ and $\mathrm E_7$. II. Fundamental lemma”, St. Petersburg Math. J., 23:6 (2012), 921–942 | DOI | MR | Zbl

[61] N. A. Vavilov, A closer look at weight diagrams of types $(\mathrm E_6,\varpi_1)$ and $(\mathrm E_7,\varpi_7)$, 2014 (to appear) , 48 pp.

[62] N. A. Vavilov, M. R. Gavrilovich, “$\mathrm A_2$-proof of structure theorems for Chevalley groups of types $\mathrm E_6$ and $\mathrm E_7$”, St. Petersburg Math. J., 16:4 (2005), 649–672 | DOI | MR | Zbl

[63] N. A. Vavilov, M. R. Gavrilovich, S. I. Nikolenko, “Structure of Chevalley groups: the proof from the Book”, J. Math. Sci. (N.Y.), 140:5 (2007), 626–645 | DOI | MR | Zbl

[64] N. A. Vavilov, V. G. Kazakevich, “More variations on the decomposition of transvections”, J. Math. Sci. (N.Y.), 171:3 (2010), 322–330 | DOI | MR | Zbl

[65] N. A. Vavilov, A. Yu. Luzgarev, “The normalizer of Chevalley groups of type $\mathrm E_6$”, St. Petersburg Math. J., 19:5 (2008), 699–718 | DOI | MR | Zbl

[66] N. A. Vavilov, A. Yu. Luzgarev, “Chevalley group of type $\mathrm E_7$ in the $56$-dimensional representation”, J. Math. Sci. (N.Y.), 180:3 (2012), 197–251 | DOI | MR | Zbl

[67] N. A. Vavilov, A. Yu. Luzgarev, “The normalizer of Chevalley groups of type $\mathrm E_7$”, St. Petersburg Math. J. (to appear)

[68] N. A. Vavilov, A. Yu. Luzgarev, “$\mathrm A_2$-proof of structure theorems for the Chevalley group of type $\mathrm E_8$”, St. Petersburg Math. J. (to appear)

[69] N. A. Vavilov, A. Yu. Luzgarev, I. M. Pevzner, “Chevalley group of type $\mathrm E_6$ in the $27$-dimensional representation”, J. Math. Sci. (N.Y.), 145:1 (2007), 4697–4736 | DOI | MR | Zbl

[70] N. Vavilov, A. Luzgarev, A. Stepanov, “Calculations in exceptional groups over rings”, J. Math. Sci., 168:3 (2010), 334–348 | DOI | MR | Zbl

[71] N. A. Vavilov, S. I. Nikolenko, “$\mathrm A_2$-proof of structure theorems for the Chevalley group of type $\mathrm F_4$”, St. Petersburg Math. J., 20:4 (2009), 527–551 | DOI | MR | Zbl

[72] N. A. Vavilov, E. B. Plotkin, “Chevalley groups over commutative rings. I. Elementary calculations”, Acta Appl. Math., 45:1 (1996), 73–113 | DOI | MR | Zbl

[73] N. A. Vavilov, E. B. Plotkin, A. V. Stepanov, “Calculations in Chevalley groups over commutative rings”, Soviet Math. Dokl., 40:1 (1990), 145–147 | MR

[74] W. C. Waterhouse, “Automorphisms of $\det(X_{ij})$: the group scheme approach”, Adv. in Math., 65:2 (1987), 171–203 | DOI | MR | Zbl