On Pinsker factors for Rokhlin entropy
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIV, Tome 432 (2015), pp. 30-35

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we prove that any dynamical system has a unique maximal factor of zero Rokhlin entropy, the so-called Pinsker factor. It is also proven that if the system is ergodic and this factor has no atoms, then the system is a relatively weakly mixing extension of its Pinsker factor.
@article{ZNSL_2015_432_a1,
     author = {A. V. Alpeev},
     title = {On {Pinsker} factors for {Rokhlin} entropy},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {30--35},
     publisher = {mathdoc},
     volume = {432},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_432_a1/}
}
TY  - JOUR
AU  - A. V. Alpeev
TI  - On Pinsker factors for Rokhlin entropy
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2015
SP  - 30
EP  - 35
VL  - 432
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2015_432_a1/
LA  - en
ID  - ZNSL_2015_432_a1
ER  - 
%0 Journal Article
%A A. V. Alpeev
%T On Pinsker factors for Rokhlin entropy
%J Zapiski Nauchnykh Seminarov POMI
%D 2015
%P 30-35
%V 432
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2015_432_a1/
%G en
%F ZNSL_2015_432_a1
A. V. Alpeev. On Pinsker factors for Rokhlin entropy. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIV, Tome 432 (2015), pp. 30-35. http://geodesic.mathdoc.fr/item/ZNSL_2015_432_a1/