On Pinsker factors for Rokhlin entropy
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIV, Tome 432 (2015), pp. 30-35 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this paper we prove that any dynamical system has a unique maximal factor of zero Rokhlin entropy, the so-called Pinsker factor. It is also proven that if the system is ergodic and this factor has no atoms, then the system is a relatively weakly mixing extension of its Pinsker factor.
@article{ZNSL_2015_432_a1,
     author = {A. V. Alpeev},
     title = {On {Pinsker} factors for {Rokhlin} entropy},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {30--35},
     year = {2015},
     volume = {432},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_432_a1/}
}
TY  - JOUR
AU  - A. V. Alpeev
TI  - On Pinsker factors for Rokhlin entropy
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2015
SP  - 30
EP  - 35
VL  - 432
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2015_432_a1/
LA  - en
ID  - ZNSL_2015_432_a1
ER  - 
%0 Journal Article
%A A. V. Alpeev
%T On Pinsker factors for Rokhlin entropy
%J Zapiski Nauchnykh Seminarov POMI
%D 2015
%P 30-35
%V 432
%U http://geodesic.mathdoc.fr/item/ZNSL_2015_432_a1/
%G en
%F ZNSL_2015_432_a1
A. V. Alpeev. On Pinsker factors for Rokhlin entropy. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIV, Tome 432 (2015), pp. 30-35. http://geodesic.mathdoc.fr/item/ZNSL_2015_432_a1/

[1] L. Bowen, “Measure conjugacy invariants for actions of countable sofic groups”, J. Amer. Math. Soc., 23 (2010), 217–245 | DOI | MR | Zbl

[2] M. Einsiedler, T. Ward, Ergodic Theory with a View Towards Number Theory, Springer, London, 2011 | MR | Zbl

[3] H. Furstenberg, “Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions”, J. Anal. Math., 31 (1977), 204–256 | DOI | MR | Zbl

[4] E. Glasner, Ergodic Theory Via Joinings, Amer. Math. Soc., Providence, Rhode Island, 2003 | MR | Zbl

[5] D. Kerr, “Sofic measure entropy via finite partitions”, Groups Geom. Dyn., 7 (2013), 617–632 | DOI | MR | Zbl

[6] V. A. Rokhlin, “On the fundamental ideas of measure theory”, Mat. Sb., 25(67):1 (1949), 107–150 | MR | Zbl

[7] V. A. Rokhlin, “Lectures on the entropy theory of transformations with invariant measure”, Uspekhi Mat. Nauk, 22:5 (1967), 3–56 | MR | Zbl

[8] B. Seward, Krieger's finite generator theorem for ergodic actions of countable groups. I, arXiv: 1405.3604

[9] R. Zimmer, “Extensions of ergodic group actions”, Illinois J. Math., 20:3 (1976), 373–409 | MR | Zbl