@article{ZNSL_2015_432_a1,
author = {A. V. Alpeev},
title = {On {Pinsker} factors for {Rokhlin} entropy},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {30--35},
year = {2015},
volume = {432},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_432_a1/}
}
A. V. Alpeev. On Pinsker factors for Rokhlin entropy. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIV, Tome 432 (2015), pp. 30-35. http://geodesic.mathdoc.fr/item/ZNSL_2015_432_a1/
[1] L. Bowen, “Measure conjugacy invariants for actions of countable sofic groups”, J. Amer. Math. Soc., 23 (2010), 217–245 | DOI | MR | Zbl
[2] M. Einsiedler, T. Ward, Ergodic Theory with a View Towards Number Theory, Springer, London, 2011 | MR | Zbl
[3] H. Furstenberg, “Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions”, J. Anal. Math., 31 (1977), 204–256 | DOI | MR | Zbl
[4] E. Glasner, Ergodic Theory Via Joinings, Amer. Math. Soc., Providence, Rhode Island, 2003 | MR | Zbl
[5] D. Kerr, “Sofic measure entropy via finite partitions”, Groups Geom. Dyn., 7 (2013), 617–632 | DOI | MR | Zbl
[6] V. A. Rokhlin, “On the fundamental ideas of measure theory”, Mat. Sb., 25(67):1 (1949), 107–150 | MR | Zbl
[7] V. A. Rokhlin, “Lectures on the entropy theory of transformations with invariant measure”, Uspekhi Mat. Nauk, 22:5 (1967), 3–56 | MR | Zbl
[8] B. Seward, Krieger's finite generator theorem for ergodic actions of countable groups. I, arXiv: 1405.3604
[9] R. Zimmer, “Extensions of ergodic group actions”, Illinois J. Math., 20:3 (1976), 373–409 | MR | Zbl