Chip removal. Urban Renewal revisited
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIV, Tome 432 (2015), pp. 5-29
Voir la notice de l'article provenant de la source Math-Net.Ru
We describe a new combinatorial-algebraic transformation on graphs which we call “chip removal.” It generalizes the well-known Urban Renewal trick of Propp and Kuperberg. The chip removal is useful in calculations of determinants of adjacency matrices and matching numbers of graphs. A beautiful example of this technique is a theorem on removing four-contact chips, which generalizes Kuo's graphical condensation method. Numerous examples are given.
@article{ZNSL_2015_432_a0,
author = {V. E. Aksenov and K. P. Kokhas},
title = {Chip removal. {Urban} {Renewal} revisited},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {5--29},
publisher = {mathdoc},
volume = {432},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_432_a0/}
}
V. E. Aksenov; K. P. Kokhas. Chip removal. Urban Renewal revisited. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIV, Tome 432 (2015), pp. 5-29. http://geodesic.mathdoc.fr/item/ZNSL_2015_432_a0/