Chip removal. Urban Renewal revisited
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIV, Tome 432 (2015), pp. 5-29 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We describe a new combinatorial-algebraic transformation on graphs which we call “chip removal.” It generalizes the well-known Urban Renewal trick of Propp and Kuperberg. The chip removal is useful in calculations of determinants of adjacency matrices and matching numbers of graphs. A beautiful example of this technique is a theorem on removing four-contact chips, which generalizes Kuo's graphical condensation method. Numerous examples are given.
@article{ZNSL_2015_432_a0,
     author = {V. E. Aksenov and K. P. Kokhas},
     title = {Chip removal. {Urban} {Renewal} revisited},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--29},
     year = {2015},
     volume = {432},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_432_a0/}
}
TY  - JOUR
AU  - V. E. Aksenov
AU  - K. P. Kokhas
TI  - Chip removal. Urban Renewal revisited
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2015
SP  - 5
EP  - 29
VL  - 432
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2015_432_a0/
LA  - ru
ID  - ZNSL_2015_432_a0
ER  - 
%0 Journal Article
%A V. E. Aksenov
%A K. P. Kokhas
%T Chip removal. Urban Renewal revisited
%J Zapiski Nauchnykh Seminarov POMI
%D 2015
%P 5-29
%V 432
%U http://geodesic.mathdoc.fr/item/ZNSL_2015_432_a0/
%G ru
%F ZNSL_2015_432_a0
V. E. Aksenov; K. P. Kokhas. Chip removal. Urban Renewal revisited. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIV, Tome 432 (2015), pp. 5-29. http://geodesic.mathdoc.fr/item/ZNSL_2015_432_a0/

[1] V. Aksenov, K. Kokhas, “Razbieniya na domino i opredeliteli”, Zap. nauchn. semin. POMI, 421, 2014, 5–18 | Zbl

[2] K. Bibak, R. Tauraso, Determinants of grids, tori, cylinders and Möbius ladders, arXiv: 1212.4816v1 | MR

[3] M. Ciucu, “Enumeration of perfect matchings in graphs with reflective symmetry”, J. Combin. Theory Ser. A, 77:1 (1997), 67–97 | DOI | MR | Zbl

[4] E. Kuo, “Application of graphical condensation for enumerating matchings and tilings”, Teoret. Comput. Sci., 319 (2004), 29–57 ; arXiv: math/0304090[math.CO] | DOI | MR | Zbl

[5] J. Propp, “Generalized domino-shuffling”, Theoret. Comput. Sci., 303:2–3 (2003), 267–301 ; arXiv: math/0111034[math.CO] | DOI | MR | Zbl

[6] H. M. Rara, “Reduction procedures for calculating the determinant of the adjacency matrix of some graphs and the singularity of square planar grids”, Discrete Math., 151 (1996), 213–219 | DOI | MR | Zbl