Nonprobabilistic infinitely divisible distributions: the L\'evy--Khinchin representation, limit theorems
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 21, Tome 431 (2014), pp. 145-177

Voir la notice de l'article provenant de la source Math-Net.Ru

We study properties of generalized infinitely divisible distributions with the Lévy measure $\Lambda(dx)=\frac{g(x)}{x^{1+\alpha}}\,dx$, $\alpha\in(2,4)\cup(4,6)$. Such measures are signed ones and hence they are not probability measures. We show that in some sence these signed measures are limit measures for sums of independent random variables.
@article{ZNSL_2014_431_a9,
     author = {M. V. Platonova},
     title = {Nonprobabilistic infinitely divisible distributions: the {L\'evy--Khinchin} representation, limit theorems},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {145--177},
     publisher = {mathdoc},
     volume = {431},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_431_a9/}
}
TY  - JOUR
AU  - M. V. Platonova
TI  - Nonprobabilistic infinitely divisible distributions: the L\'evy--Khinchin representation, limit theorems
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2014
SP  - 145
EP  - 177
VL  - 431
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2014_431_a9/
LA  - ru
ID  - ZNSL_2014_431_a9
ER  - 
%0 Journal Article
%A M. V. Platonova
%T Nonprobabilistic infinitely divisible distributions: the L\'evy--Khinchin representation, limit theorems
%J Zapiski Nauchnykh Seminarov POMI
%D 2014
%P 145-177
%V 431
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2014_431_a9/
%G ru
%F ZNSL_2014_431_a9
M. V. Platonova. Nonprobabilistic infinitely divisible distributions: the L\'evy--Khinchin representation, limit theorems. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 21, Tome 431 (2014), pp. 145-177. http://geodesic.mathdoc.fr/item/ZNSL_2014_431_a9/