Nonprobabilistic infinitely divisible distributions: the Lévy–Khinchin representation, limit theorems
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 21, Tome 431 (2014), pp. 145-177 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study properties of generalized infinitely divisible distributions with the Lévy measure $\Lambda(dx)=\frac{g(x)}{x^{1+\alpha}}\,dx$, $\alpha\in(2,4)\cup(4,6)$. Such measures are signed ones and hence they are not probability measures. We show that in some sence these signed measures are limit measures for sums of independent random variables.
@article{ZNSL_2014_431_a9,
     author = {M. V. Platonova},
     title = {Nonprobabilistic infinitely divisible distributions: the {L\'evy{\textendash}Khinchin} representation, limit theorems},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {145--177},
     year = {2014},
     volume = {431},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_431_a9/}
}
TY  - JOUR
AU  - M. V. Platonova
TI  - Nonprobabilistic infinitely divisible distributions: the Lévy–Khinchin representation, limit theorems
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2014
SP  - 145
EP  - 177
VL  - 431
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2014_431_a9/
LA  - ru
ID  - ZNSL_2014_431_a9
ER  - 
%0 Journal Article
%A M. V. Platonova
%T Nonprobabilistic infinitely divisible distributions: the Lévy–Khinchin representation, limit theorems
%J Zapiski Nauchnykh Seminarov POMI
%D 2014
%P 145-177
%V 431
%U http://geodesic.mathdoc.fr/item/ZNSL_2014_431_a9/
%G ru
%F ZNSL_2014_431_a9
M. V. Platonova. Nonprobabilistic infinitely divisible distributions: the Lévy–Khinchin representation, limit theorems. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 21, Tome 431 (2014), pp. 145-177. http://geodesic.mathdoc.fr/item/ZNSL_2014_431_a9/

[1] B. V. Gnedenko, A. N. Kolmogorov, Predelnye raspredeleniya dlya summ nezavisimykh sluchainykh velichin, Gostekhizdat, Moskva, 1949

[2] N. V. Smorodina, M. M. Faddeev, “The Lévy–Khinchin representation of the one class of signed stable measures and some its applications”, Acta Appl. Math., 110 (2010), 1289–1308 | DOI | MR | Zbl

[3] I. A. Ibragimov, N. V. Smorodina, M. M. Faddeev, “Veroyatnostnaya approksimatsiya reshenii zadachi Koshi dlya nekotorykh evolyutsionnykh uravnenii”, Zap. nauchn. semin. POMI, 396, 2011, 111–143 | MR

[4] I. A. Ibragimov, N. V. Smorodina, M. M. Faddeev, “Predelnye teoremy o skhodimosti funktsionalov ot kompleksnykh sluchainykh bluzhdanii k resheniyam nachalno-kraevykh zadach”, Zap. nauchn. semin. POMI, 420, 2013, 88–102

[5] A. L. Yakymiv, Veroyatnostnye prilozheniya tauberovykh teorem, Fizmatlit, Moskva, 2005 | Zbl

[6] A. N. Kolmogorov, S. V. Fomin, Elementy teorii funktsii i funktsionalnogo analiza, Nauka, Moskva, 1976 | MR