On stochastic models of service system with dependent process characteristics
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 21, Tome 431 (2014), pp. 110-139 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider a generalization of a service system model introduced by I. Kaj and M. Taqqu. Unlike their setting, we drop the unnatural assumption of independence between the duration and required resources quantity of a service process. We present a number of limit theorems for the process of integral workload. Wiener process, Fractional Brownian motion, or Stable Lévy process may show up as the limits.
@article{ZNSL_2014_431_a7,
     author = {E. S. Kosarevskaya},
     title = {On stochastic models of service system with dependent process characteristics},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {110--139},
     year = {2014},
     volume = {431},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_431_a7/}
}
TY  - JOUR
AU  - E. S. Kosarevskaya
TI  - On stochastic models of service system with dependent process characteristics
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2014
SP  - 110
EP  - 139
VL  - 431
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2014_431_a7/
LA  - ru
ID  - ZNSL_2014_431_a7
ER  - 
%0 Journal Article
%A E. S. Kosarevskaya
%T On stochastic models of service system with dependent process characteristics
%J Zapiski Nauchnykh Seminarov POMI
%D 2014
%P 110-139
%V 431
%U http://geodesic.mathdoc.fr/item/ZNSL_2014_431_a7/
%G ru
%F ZNSL_2014_431_a7
E. S. Kosarevskaya. On stochastic models of service system with dependent process characteristics. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 21, Tome 431 (2014), pp. 110-139. http://geodesic.mathdoc.fr/item/ZNSL_2014_431_a7/

[1] I. Kaj, M. S. Taqqu, “Convergence to fractional Brownian motion and to the Telecom process: the integral representation approach”, In and Out of Equilibrium, v. 2, Ser. Progress in Probability, 60, Birkhäuser, Basel, 2008, 383–427 | MR | Zbl

[2] M. Lifshits, Random Processes by Example, World Scientific, Sigapure, 2014 | MR | Zbl

[3] K. A. Aksenova, “O stokhasticheskikh modelyakh teletrafika s tyazhëlymi khvostami raspredelenii”, Zap. nauchn. semin. POMI, 384, 2010, 5–20 | MR

[4] E. S. Garai, “O predelnoi teoreme v nekotorykh sistemakh obsluzhivaniya”, Zap. nauchn. semin. POMI, 431, 2014, 56–71

[5] D. V. Astakhova, Veroyatnosti bolshikh uklonenii v stokhasticheskikh modelyakh teletrafika, Diplomnaya rabota, SPbGU, 2011