On stochastic models of service system with dependent process characteristics
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 21, Tome 431 (2014), pp. 110-139
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We consider a generalization of a service system model introduced by I. Kaj and M. Taqqu. Unlike their setting, we drop the unnatural assumption of independence between the duration and required resources quantity of a service process. We present a number of limit theorems for the process of integral workload. Wiener process, Fractional Brownian motion, or Stable Lévy process may show up as the limits.
			
            
            
            
          
        
      @article{ZNSL_2014_431_a7,
     author = {E. S. Kosarevskaya},
     title = {On stochastic models of service system with dependent process characteristics},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {110--139},
     publisher = {mathdoc},
     volume = {431},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_431_a7/}
}
                      
                      
                    E. S. Kosarevskaya. On stochastic models of service system with dependent process characteristics. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 21, Tome 431 (2014), pp. 110-139. http://geodesic.mathdoc.fr/item/ZNSL_2014_431_a7/