On the estimation of the intensity density function of Poisson random field outside of the observation region
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 21, Tome 431 (2014), pp. 97-109
Voir la notice de l'article provenant de la source Math-Net.Ru
A Poisson random field with the intensity density function $\frac{\lambda(x)}\varepsilon$ is observed in a bounded region $G\subseteq\mathbb R^d$. It is supposed that the unknown function $\lambda$ belongs to a known class of entire functions. The parameter $\varepsilon$ is supposed to be known. The problem is to estimate the value $\lambda(x)$ at the points $x\notin G$. We consider an asymptotic setup of the problem when $\varepsilon\to0$.
@article{ZNSL_2014_431_a6,
author = {I. A. Ibragimov},
title = {On the estimation of the intensity density function of {Poisson} random field outside of the observation region},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {97--109},
publisher = {mathdoc},
volume = {431},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_431_a6/}
}
TY - JOUR AU - I. A. Ibragimov TI - On the estimation of the intensity density function of Poisson random field outside of the observation region JO - Zapiski Nauchnykh Seminarov POMI PY - 2014 SP - 97 EP - 109 VL - 431 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2014_431_a6/ LA - ru ID - ZNSL_2014_431_a6 ER -
%0 Journal Article %A I. A. Ibragimov %T On the estimation of the intensity density function of Poisson random field outside of the observation region %J Zapiski Nauchnykh Seminarov POMI %D 2014 %P 97-109 %V 431 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2014_431_a6/ %G ru %F ZNSL_2014_431_a6
I. A. Ibragimov. On the estimation of the intensity density function of Poisson random field outside of the observation region. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 21, Tome 431 (2014), pp. 97-109. http://geodesic.mathdoc.fr/item/ZNSL_2014_431_a6/