Asymptotically efficient importance sampling for the bootstrap
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 21, Tome 431 (2014), pp. 82-96 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We establish Large Deviation Principle for conditional moderate deviation probabilities of weighted bootstrap empirical measures given empirical measures. On the base of this result, for the problem of estimation of moderate deviation probabilities of statistics having Hadamard derivatives, we prove asymptotic efficiency of importance sampling based on influence functions.
@article{ZNSL_2014_431_a5,
     author = {M. S. Ermakov},
     title = {Asymptotically efficient importance sampling for the bootstrap},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {82--96},
     year = {2014},
     volume = {431},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_431_a5/}
}
TY  - JOUR
AU  - M. S. Ermakov
TI  - Asymptotically efficient importance sampling for the bootstrap
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2014
SP  - 82
EP  - 96
VL  - 431
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2014_431_a5/
LA  - ru
ID  - ZNSL_2014_431_a5
ER  - 
%0 Journal Article
%A M. S. Ermakov
%T Asymptotically efficient importance sampling for the bootstrap
%J Zapiski Nauchnykh Seminarov POMI
%D 2014
%P 82-96
%V 431
%U http://geodesic.mathdoc.fr/item/ZNSL_2014_431_a5/
%G ru
%F ZNSL_2014_431_a5
M. S. Ermakov. Asymptotically efficient importance sampling for the bootstrap. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 21, Tome 431 (2014), pp. 82-96. http://geodesic.mathdoc.fr/item/ZNSL_2014_431_a5/

[1] J. A. Bucklew, Large deviations techniques in decision, simulation and estimation, John Wiley and Sons, NY, 1990 | MR

[2] J. A. Bucklew, P. Ney, J. S. Sadowsky, “Monte-Carlo simulation and large deviation theory for uniformly recurrent Markov chains”, J. Appl. Probab., 27 (1990), 44–59 | DOI | MR | Zbl

[3] M. S. Ermakov, “Importance sampling for simulation of moderate deviation probabilities of statistics”, Statist. Decision, 25 (2007), 265–284 | MR | Zbl

[4] M. S. Ermakov, “Printsip bolshikh uklonenii dlya veroyatnostei umerennykh uklonenii empiricheskikh butstrap-mer”, Zap. nauchn. semin. POMI, 412, 2013, 138–180

[5] F. Gao, X. Zhao, “Delta method in large deviations and moderate deviations for estimators”, Ann. Statist., 39 (2011), 1211–1240 | DOI | MR | Zbl

[6] M. Johns, “Importance sampling for bootstrap confidence intervals”, Journ. Amer. Statist. Assoc., 83:403 (1988), 709–714 | DOI | MR | Zbl

[7] V. V. Petrov, Sums of Independent Random Variables, Springer Verlag, NY, 1975 | MR | Zbl

[8] J. S. Sadowsky, “On Monte-Carlo estimation of large deviation probabilities”, Ann. Appl. Probab., 6 (1996), 399–422 | DOI | MR | Zbl

[9] J. S. Sadowsky, J. A. Bucklew, “On large deviation theory and asymptotically efficient Monte-Carlo estimation”, IEEE Trans. Inf. Theory, 36 (1990), 579–588 | DOI | MR | Zbl

[10] L. Saulis, V. Statulyavichus, Predelnye teoremy dlya bolshikh uklonenii, Mokslas, Vilnyus, 1989 | MR | Zbl

[11] A. W. van der Vaart, J. A. Wellner, Weak Convergence and Empirical Processes with Applications to Statistics, Springer, NY, 1996 | MR