On the Littlewood--Offord problem
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 21, Tome 431 (2014), pp. 72-81

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with studying a connection of the Littlewood–Offord problem with estimating the concentration functions of some symmetric infinitely divisible distributions. Some multivariate generalizations of results of Arak (1980) are given. They show a connection of the concentration function of the sum with the arithmetic structure of supports of distributions of independent random vectors for arbitrary distributions of summands.
@article{ZNSL_2014_431_a4,
     author = {Yu. S. Eliseeva and A. Yu. Zaitsev},
     title = {On the {Littlewood--Offord} problem},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {72--81},
     publisher = {mathdoc},
     volume = {431},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_431_a4/}
}
TY  - JOUR
AU  - Yu. S. Eliseeva
AU  - A. Yu. Zaitsev
TI  - On the Littlewood--Offord problem
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2014
SP  - 72
EP  - 81
VL  - 431
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2014_431_a4/
LA  - ru
ID  - ZNSL_2014_431_a4
ER  - 
%0 Journal Article
%A Yu. S. Eliseeva
%A A. Yu. Zaitsev
%T On the Littlewood--Offord problem
%J Zapiski Nauchnykh Seminarov POMI
%D 2014
%P 72-81
%V 431
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2014_431_a4/
%G ru
%F ZNSL_2014_431_a4
Yu. S. Eliseeva; A. Yu. Zaitsev. On the Littlewood--Offord problem. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 21, Tome 431 (2014), pp. 72-81. http://geodesic.mathdoc.fr/item/ZNSL_2014_431_a4/