On the Littlewood--Offord problem
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 21, Tome 431 (2014), pp. 72-81
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper deals with studying a connection of the Littlewood–Offord problem with estimating the concentration functions of some symmetric infinitely divisible distributions. Some multivariate generalizations of results of Arak (1980) are given. They show a connection of the concentration function of the sum with the arithmetic structure of supports of distributions of independent random vectors for arbitrary distributions of summands.
@article{ZNSL_2014_431_a4,
author = {Yu. S. Eliseeva and A. Yu. Zaitsev},
title = {On the {Littlewood--Offord} problem},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {72--81},
publisher = {mathdoc},
volume = {431},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_431_a4/}
}
Yu. S. Eliseeva; A. Yu. Zaitsev. On the Littlewood--Offord problem. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 21, Tome 431 (2014), pp. 72-81. http://geodesic.mathdoc.fr/item/ZNSL_2014_431_a4/