On limit theorem in some service systems
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 21, Tome 431 (2014), pp. 56-71 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A service system model introduced by I. Kaj and M. Taqqu is considered. We prove a limit theorem for a process of integral workload on service system. This theorem is generalize a corresponding result of I. Kaj and M. Taqqu, since a weak convergence in Skorokhod space is established.
@article{ZNSL_2014_431_a3,
     author = {E. S. Garai},
     title = {On limit theorem in some service systems},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {56--71},
     year = {2014},
     volume = {431},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_431_a3/}
}
TY  - JOUR
AU  - E. S. Garai
TI  - On limit theorem in some service systems
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2014
SP  - 56
EP  - 71
VL  - 431
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2014_431_a3/
LA  - ru
ID  - ZNSL_2014_431_a3
ER  - 
%0 Journal Article
%A E. S. Garai
%T On limit theorem in some service systems
%J Zapiski Nauchnykh Seminarov POMI
%D 2014
%P 56-71
%V 431
%U http://geodesic.mathdoc.fr/item/ZNSL_2014_431_a3/
%G ru
%F ZNSL_2014_431_a3
E. S. Garai. On limit theorem in some service systems. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 21, Tome 431 (2014), pp. 56-71. http://geodesic.mathdoc.fr/item/ZNSL_2014_431_a3/

[1] P. Billingsli, Skhodimost veroyatnostnykh mer, Nauka, M., 1977 | MR

[2] E. S. Garai, O predelnykh teoremakh v nekotorykh sistemakh obsluzhivaniya, Diplomnaya rabota, SPbGU, 2008

[3] M. A. Lifshits, Ustoichivye raspredeleniya, sluchainye velichiny i protsessy, Uchebno-metod. posobie, SPb., 2007

[4] M. A. Lifshits, Random Processes by Example, Word Scientific, Singapure, 2014 | MR | Zbl

[5] R. Gaigalas, I. Kaj, “Convergence of scaled renewal processes and a packet arrival model”, Bernoulli, 9 (2003), 671–703 | DOI | MR | Zbl

[6] I. Kaj, M. S. Taqqu, “Convergence to fractional Brownian motion and to the Telecom process: the integral representation approach”, In and Out of Equilibium, v. 2, Ser. Progress in Probability, 60, Birkhäuser, Basel, 2008, 383–427 | MR | Zbl

[7] J. B. Levy, M. S. Taqqu, “Renewal reward processes with heavy-tailed interrenewal times and heavy-tailed rewards”, Bernoulli, 6 (2000), 23–44 | DOI | MR | Zbl

[8] Th. Mikosch, S. Resnick, H. Rootzen, A. Stegeman, “Is network traffic approximated by stable Lévy motion or fractional Brownian motion?”, Ann. Appl. Probab., 12 (2002), 23–68 | DOI | MR | Zbl

[9] V. Pipiras, M. S. Taqqu, “The limit of a renewal-reward process with heavy-tailed rewards is not a linear fractional stable motion”, Bernoulli, 6 (2000), 607–614 | DOI | MR | Zbl

[10] V. Pipiras, M. S. Taqqu, J. B. Levy, “Slow, fast and arbitrary growth conditions for renewal reward processes when the renewals and the rewards are heavy-tailed”, Bernoulli, 10 (2004), 121–163 | DOI | MR | Zbl

[11] M. S. Taqqu, “The modeling of Ethernet data and of signals that are heavy-tailed with infinite variance”, Scand. J. Stat., 29 (2002), 273–295 | DOI | MR | Zbl

[12] W. Willinger, V. Paxson, R. H. Riedi, M. S. Taqqu, “Long-range dependence and data network traffic”, Theory and Applications of Long-Range Dependence, eds. P. Doukhan, G. Oppenheim, M. S. Taqqu, Birkhäuser, Basel, 2003, 373–407 | MR | Zbl