On the approximation of the solutions of some evolution equations by the expectations of functionals of random walks
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 21, Tome 431 (2014), pp. 242-252 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider some problems associated with a probabilistic representation and a probabilistic approximation of the Cauchy problem solution for the family of equations $\frac{\partial u}{\partial t}=\frac{\sigma^2}2\Delta u$ with a complex parameter $\sigma$ such that $\operatorname{Re}\sigma^2\geqslant0$. This equation coincides with the heat equation when $\operatorname{Im}\sigma=0$ and with the Schrödinger equation when $\operatorname{Re}\sigma^2=0$.
@article{ZNSL_2014_431_a14,
     author = {S. V. Tsykin},
     title = {On the approximation of the solutions of some evolution equations by the expectations of functionals of random walks},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {242--252},
     year = {2014},
     volume = {431},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_431_a14/}
}
TY  - JOUR
AU  - S. V. Tsykin
TI  - On the approximation of the solutions of some evolution equations by the expectations of functionals of random walks
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2014
SP  - 242
EP  - 252
VL  - 431
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2014_431_a14/
LA  - ru
ID  - ZNSL_2014_431_a14
ER  - 
%0 Journal Article
%A S. V. Tsykin
%T On the approximation of the solutions of some evolution equations by the expectations of functionals of random walks
%J Zapiski Nauchnykh Seminarov POMI
%D 2014
%P 242-252
%V 431
%U http://geodesic.mathdoc.fr/item/ZNSL_2014_431_a14/
%G ru
%F ZNSL_2014_431_a14
S. V. Tsykin. On the approximation of the solutions of some evolution equations by the expectations of functionals of random walks. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 21, Tome 431 (2014), pp. 242-252. http://geodesic.mathdoc.fr/item/ZNSL_2014_431_a14/

[1] P. A. M. Dirak, Printsipy kvantovoi mekhaniki, Nauka, M., 1979 | MR

[2] I. A. Ibragimov, N. V. Smorodina, M. M. Faddeev, “Predelnaya teorema o skhodimosti funktsionalov ot sluchainogo bluzhdaniya k resheniyu zadachi Koshi dlya uravneniya $\frac{\partial u}{\partial t}=\frac{\sigma^2}2\Delta u$ s kompleksnym parametrom $\sigma$”, Zap. nauchn. semin. POMI, 420, 2013, 88–102

[3] I. A. Ibragimov, N. V. Smorodina, M. M. Faddeev, “Veroyatnostnaya approksimatsiya reshenii zadachi Koshi dlya nekotorykh evolyutsionnykh uravnenii”, Zap. nauchn. semin. POMI, 396, 2011, 111–143 | MR

[4] S. M. Nikolskii, Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1977 | MR

[5] N. V. Smorodina, M. M. Faddeev, “The Le'vy-Khinchin representation of the one class of signed stable measures and some its applications”, Acta Appl. Math., 110:3 (2010), 1289–1308 | DOI | MR | Zbl