On the approximation of the solutions of some evolution equations by the expectations of functionals of random walks
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 21, Tome 431 (2014), pp. 242-252
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider some problems associated with a probabilistic representation and a probabilistic approximation of the Cauchy problem solution for the family of equations $\frac{\partial u}{\partial t}=\frac{\sigma^2}2\Delta u$ with a complex parameter $\sigma$ such that $\operatorname{Re}\sigma^2\geqslant0$. This equation coincides with the heat equation when $\operatorname{Im}\sigma=0$ and with the Schrödinger equation when $\operatorname{Re}\sigma^2=0$.
@article{ZNSL_2014_431_a14,
author = {S. V. Tsykin},
title = {On the approximation of the solutions of some evolution equations by the expectations of functionals of random walks},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {242--252},
publisher = {mathdoc},
volume = {431},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_431_a14/}
}
TY - JOUR AU - S. V. Tsykin TI - On the approximation of the solutions of some evolution equations by the expectations of functionals of random walks JO - Zapiski Nauchnykh Seminarov POMI PY - 2014 SP - 242 EP - 252 VL - 431 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2014_431_a14/ LA - ru ID - ZNSL_2014_431_a14 ER -
%0 Journal Article %A S. V. Tsykin %T On the approximation of the solutions of some evolution equations by the expectations of functionals of random walks %J Zapiski Nauchnykh Seminarov POMI %D 2014 %P 242-252 %V 431 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2014_431_a14/ %G ru %F ZNSL_2014_431_a14
S. V. Tsykin. On the approximation of the solutions of some evolution equations by the expectations of functionals of random walks. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 21, Tome 431 (2014), pp. 242-252. http://geodesic.mathdoc.fr/item/ZNSL_2014_431_a14/