Lattice point problem and the question of estimation and detection of smooth functions of many variables
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 21, Tome 431 (2014), pp. 198-208
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the problem of asymptotics of $N_d(m)$, where $N_d(m)$ is the number of integer lattice points in the $d$-dimensional ball of radius $m$ (in $l_1$ and $l_2$-norms) for $d\to\infty$, $m\to\infty$. We show that this asymptotics differs from the asymptotic volume of $d$-dimensional ball of radius $m$ when the rate of convergence of $d$ to infinity is sufficiently high in comparison with that of $m$.
@article{ZNSL_2014_431_a12,
author = {I. A. Suslina},
title = {Lattice point problem and the question of estimation and detection of smooth functions of many variables},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {198--208},
publisher = {mathdoc},
volume = {431},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_431_a12/}
}
TY - JOUR AU - I. A. Suslina TI - Lattice point problem and the question of estimation and detection of smooth functions of many variables JO - Zapiski Nauchnykh Seminarov POMI PY - 2014 SP - 198 EP - 208 VL - 431 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2014_431_a12/ LA - ru ID - ZNSL_2014_431_a12 ER -
I. A. Suslina. Lattice point problem and the question of estimation and detection of smooth functions of many variables. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 21, Tome 431 (2014), pp. 198-208. http://geodesic.mathdoc.fr/item/ZNSL_2014_431_a12/