Lattice point problem and the question of estimation and detection of smooth functions of many variables
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 21, Tome 431 (2014), pp. 198-208 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider the problem of asymptotics of $N_d(m)$, where $N_d(m)$ is the number of integer lattice points in the $d$-dimensional ball of radius $m$ (in $l_1$ and $l_2$-norms) for $d\to\infty$, $m\to\infty$. We show that this asymptotics differs from the asymptotic volume of $d$-dimensional ball of radius $m$ when the rate of convergence of $d$ to infinity is sufficiently high in comparison with that of $m$.
@article{ZNSL_2014_431_a12,
     author = {I. A. Suslina},
     title = {Lattice point problem and the question of estimation and detection of smooth functions of many variables},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {198--208},
     year = {2014},
     volume = {431},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_431_a12/}
}
TY  - JOUR
AU  - I. A. Suslina
TI  - Lattice point problem and the question of estimation and detection of smooth functions of many variables
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2014
SP  - 198
EP  - 208
VL  - 431
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2014_431_a12/
LA  - ru
ID  - ZNSL_2014_431_a12
ER  - 
%0 Journal Article
%A I. A. Suslina
%T Lattice point problem and the question of estimation and detection of smooth functions of many variables
%J Zapiski Nauchnykh Seminarov POMI
%D 2014
%P 198-208
%V 431
%U http://geodesic.mathdoc.fr/item/ZNSL_2014_431_a12/
%G ru
%F ZNSL_2014_431_a12
I. A. Suslina. Lattice point problem and the question of estimation and detection of smooth functions of many variables. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 21, Tome 431 (2014), pp. 198-208. http://geodesic.mathdoc.fr/item/ZNSL_2014_431_a12/

[1] F. Götze, “Lattice point problem and the Central Limit Theorem in Euclidean spaces”, Documenta Mathematica, 1998, Extra Volume III, 245–255 | MR | Zbl

[2] I. A. Ibragimov, R. Z. Khasminskii, “Asymptotic properties of some nonparametric estimators in a Gaussian white noise”, Proc. 3rd Summer School on Probab. Theory and Math. Statist. (Varna, 1978), Sofia, 1980, 29–64 | MR | Zbl

[3] I. A. Ibragimov, R. Z. Khasminskii, “Some estimation problems on infinite dimensional Gaussian white noise”, Festschrift for Lucien Le Cam, Research Papers in Probability and Statistics, Springer, New York, 1997, 275–296 | MR

[4] Yu. I. Ingster, I. A. Suslina, Nonparametric Goodness-of-Fit Testing under Gaussian Model, Lect. Notes Statist., 169, Springer, New York, 2003 | DOI | MR | Zbl

[5] Yu. I. Ingster, I. A. Suslina, “On estimation and detection of smooth function of many variables”, Math. Methods Statist., 14 (2005), 299–331 | MR

[6] Yu. I. Ingster, I. A. Suslina, “Otsenivanie i proverka gipotez dlya funktsii iz tenzornykh proizvedenii prostranstv”, Zap. nauchn. semin. POMI, 351, 2007, 180–218 | MR