Mackenhoupt condition and an estimating problem
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 21, Tome 431 (2014), pp. 186-197 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper deals with studying a connection of the weighted norm inequalities for the Hilbert transform with matrix valued weights and an estimating problem. We show a connection of the vector Muckenhoupt condition on the spectral density of the stationary noise and the possibility to transform a difficult estimating problem to another well-studied.
@article{ZNSL_2014_431_a11,
     author = {V. N. Solev},
     title = {Mackenhoupt condition and an estimating problem},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {186--197},
     year = {2014},
     volume = {431},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2014_431_a11/}
}
TY  - JOUR
AU  - V. N. Solev
TI  - Mackenhoupt condition and an estimating problem
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2014
SP  - 186
EP  - 197
VL  - 431
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2014_431_a11/
LA  - ru
ID  - ZNSL_2014_431_a11
ER  - 
%0 Journal Article
%A V. N. Solev
%T Mackenhoupt condition and an estimating problem
%J Zapiski Nauchnykh Seminarov POMI
%D 2014
%P 186-197
%V 431
%U http://geodesic.mathdoc.fr/item/ZNSL_2014_431_a11/
%G ru
%F ZNSL_2014_431_a11
V. N. Solev. Mackenhoupt condition and an estimating problem. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 21, Tome 431 (2014), pp. 186-197. http://geodesic.mathdoc.fr/item/ZNSL_2014_431_a11/

[1] Yu. A. Rozanov, Statsionarnye protsessy, Mir, M., 1963

[2] I. A. Ibragimov, Yu. A. Rozanov, Gaussovskie protsessy, Mir, M., 1974

[3] I. A. Ibragimov, R. Z. Khasminskii, “O neparametricheskom otsenivanii znacheniya lineinogo funktsionala v gaussovskom belom shume”, Teoriya veroyatn. i ee primenen., 29:1 (1984), 19–32 | MR | Zbl

[4] W. Stepanoff, “Sur quelques généralisatiou des fonctions presque-périodiques”, Comptes Rendus, 181 (1925), 90–92 | Zbl

[5] N. Viner, R. Peli, Preobrazovanie Fure v kompleksnoi ploskosti, Nauka, M., 1964 | MR

[6] J. B. Garnett, Bounded Analytic Functions, Academic Press, NY, 1981 | MR | Zbl

[7] R. Hunt, B. Muckenhoupt, R. Wheeden, “Weighted norm inequalities for the conjugate function and Hilbert transform”, Trans. Amer. Math. Soc., 176 (1973), 227–251 | DOI | MR | Zbl

[8] V. N. Solev, “Tochnost metoda naimenshikh kvadratov v zadache otsenivaniya v statsionarnom shume”, Zap. nauchn. semin. POMI, 228, 1996, 294–299 | MR | Zbl

[9] V. N. Solev, “Gaussovskie $f$-regulyarnye protsessy i asimptoticheskoe povedenie funktsii pravdopodobiya”, Zap. nauchn. semin. POMI, 119, 1982, 203–217 | MR | Zbl

[10] V. N. Solev, Ch. Bulot, “Prediction problems and Hunt–Muckenhoupt–Wheeden condition”, Zap. nauchn. semin. POMI, 260, 1999, 73–83 | MR | Zbl

[11] S. V. Reshetov, “Minimaksnaya otsenka psevdo-periodicheskoi funktsii, nablyudaemoi na fone statsionarnogo shuma”, Vestnik SPbGU, Seriya 1, 2010, no. 2, 106–115 | MR

[12] S. Treil, A. Volberg, Continuous wavelet decomposition and a vector Hunt–Muckenhoupt–Wheeden Theorem, Preprint, 1995, 16 pp.; Ark. fur Mat., 35 (1997), 363–386 | MR | Zbl